题面

经典的最长公共子序列模型。

我们设 \(dp_{i,j}\) 表示 \(a_{1...i}\) 与 \(b_{1...j}\) 匹配上所需的最少操作数。

考虑删除操作,我们将 \(a_i\) 删除后 \(a_{1...i}\) 就与 \(b_{1...j}\) 匹配上了,说明原来 \(a_{1...i-1}\) 与 \(b_{1...j}\) 就是匹配上的,转移方程就是 \(dp_{i,j}=dp_{i-1,j}+1\)。

插入操作与删除操作同理,转移方程是 \(dp_{i,j}=dp_{i,j-1}+1\)。

考虑替换操作,

  • 如果 \(a_i=b_j\),则 \(dp_{i,j}=dp_{i-1,j-1}\)。
  • 如果 \(a_i\ne b_j\),则 \(dp_{i,j}=dp_{i-1,j-1}+1\)。

转移时这 \(3\) 种情况取 \(\min\) 即可。

边界条件: \(dp_{i,0}=i\),\(dp_{0,i}=i\)。

#include <bits/stdc++.h>

using namespace std;

int n, m, ans, dp[1003][1003];
char a[1003], b[1003]; int main()
{
scanf("%d%s", &n, a + 1);
scanf("%d%s", &m, b + 1);
for (int i = 1; i <= n; i+=1) dp[i][0] = i;
for (int i = 1; i <= m; i+=1) dp[0][i] = i;
for (int i = 1; i <= n; i+=1)
for (int j = 1; j <= m; j+=1)
{
dp[i][j] = min(dp[i][j - 1] + 1, dp[i - 1][j] + 1);
if (a[i] == b[j]) dp[i][j] = min(dp[i][j], dp[i - 1][j - 1]);
else dp[i][j] = min(dp[i][j], dp[i - 1][j - 1] + 1);
}
cout << dp[n][m] << endl;
return 0;
}

题解【AcWing902】最短编辑距离的更多相关文章

  1. POJ_3356——最短编辑距离,动态规划

    Description Let x and y be two strings over some finite alphabet A. We would like to transform x int ...

  2. (5千字)由浅入深讲解动态规划(JS版)-钢条切割,最大公共子序列,最短编辑距离

    斐波拉契数列 首先我们来看看斐波拉契数列,这是一个大家都很熟悉的数列: // f = [1, 1, 2, 3, 5, 8] f(1) = 1; f(2) = 1; f(n) = f(n-1) + f( ...

  3. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  4. POJ 3356(最短编辑距离问题)

    POJ - 3356 AGTC Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Desc ...

  5. leetCode题解寻找最短字符路径

    1.题目描述 2.分析 最简单的方案,对每一个字符,向两边寻找. 3.代码 vector<int> shortestToChar(string S, char C) { vector< ...

  6. acwing 902. 最短编辑距离

    地址 https://www.acwing.com/problem/content/904/ 给定两个字符串A和B,现在要将A经过若干操作变为B,可进行的操作有: 删除–将字符串A中的某个字符删除. ...

  7. 【CJOJ1644】【洛谷2758】编辑距离

    题面 题目描述 设A和B是两个字符串.我们要用最少的字符操作次数,将字符串A转换为字符串B.这里所说的字符操作共有三种: 1.删除一个字符: 2.插入一个字符: 3.将一个字符改为另一个字符: 皆为小 ...

  8. stanford NLP学习笔记3:最小编辑距离(Minimum Edit Distance)

    I. 最小编辑距离的定义 最小编辑距离旨在定义两个字符串之间的相似度(word similarity).定义相似度可以用于拼写纠错,计算生物学上的序列比对,机器翻译,信息提取,语音识别等. 编辑距离就 ...

  9. 编辑距离算法详解:Levenshtein Distance算法

    算法基本原理:假设我们可以使用d[ i , j ]个步骤(可以使用一个二维数组保存这个值),表示将串s[ 1…i ] 转换为 串t [ 1…j ]所需要的最少步骤个数,那么,在最基本的情况下,即在i等 ...

随机推荐

  1. codewars--js--Human Readable Time—Math对象,parseInt()

    问题描述: Write a function, which takes a non-negative integer (seconds) as input and returns the time i ...

  2. Android.mk文件LOCAL_SDK_VERSION选项

    Api分类 internal api 翻译为内部API,理解为供sdk内部使用的API. 这类接口最初打算就是不对外公开的,有点private的意思. hide api 在源码中看到使用@hide 标 ...

  3. MongoDB集群负载不均衡问题定位及解决

    1.问题描述 这是一套运行在腾讯云上的MongoDB 3.6版本集群,共5个分片,每片规格是6核16GB. 在压测的过程中,发现第3个分片的CPU使用率长时间高达96%,其它4个分片的CPU使用率都没 ...

  4. mongo curd

    常用命令 未完待续...

  5. 使用uftrace来debug应用程序

    谈uftrace之前,先谈谈ftrace. ftrace是一个用于调试linux内核的工具,它可以用于调试内核的调用栈,performance等. ftrace的核心是在编译内核代码时,通过制定-pg ...

  6. go 算法与数据结构

    数据结构 稀疏数组 package main import "fmt" /* 稀疏数组 案例:五子棋存盘与复盘 节省存储空间 */ type ValNode struct { ro ...

  7. MySQL 8 InnoDB 集群管理

    使用 dba.checkInstanceConfiguration() 在添加实例到集群中前,使用该方法检查实例配置是否满足InnoDB 集群要求. 使用 dba.configureLocalInst ...

  8. postman请求(请求方式、请求url、请求参数、参数类型、请求头)

    请求方式:get 请求地址: 请求参数:url与参数用?间隔,多个参数用&间隔 请求方式:post 请求地址: 请求参数: 请求参数格式:前面两种是key-value.第三种可以选择json/ ...

  9. 洛谷题解 P1024 【一元三次方程求解】

    原题传送门 题目描述 有形如:ax^3+bx^2+cx^1+dx^0=0这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在-100至10 ...

  10. 每隔n步循环删除,返回最后一个元素

    题目:有一个数组a[N]顺序存放0~N-1,要求每隔两个数删掉一个数,到末尾时循环至开头继续进行,求最后一个被删掉的数的原始下标位置.以8个数(N=7)为例:{0,1,2,3,4,5,6,7},0-& ...