BFS-八数码问题与状态图搜索
在一个3*3的棋盘上放置编号为1~8的八个方块,每个占一格,另外还有一个空格。与空格相邻的数字方块可以移动到空格里。任务1:指定的初始棋局和目标棋局,计算出最少的移动步数;任务2:数出数码的移动序列。
把空格看成0,一共有九个数字。
输入样例:
1 2 3 0 8 4 7 6 5
1 0 3 8 2 3 7 6 5
输出样例:
2
1.把一个棋局看成一个状态图,总共有9!= 362880个状态。从初始棋局开始,每次移动转到下一个状态,达到目标棋局后停止。
2.康托展开
康托展开是一种特殊的哈希函数。其功能是在输入一个排列,计算出它在在全排列中从小到大排序的位次。
eg:判断 2143是{1,2,3,4}的全排列中的位次。
(1)首位小于2的所有排列。比2小的只有1,后面三个数的排列有3*2*1=3!个,写成1*3!=6
(2)首位为2,第二位小于1的所有排列。无,写成0*2!=0
(3)前两位为21,第三位小于4的所有排列。只有3一个数,写成1*1!=1
(3)前三位为214,第四位小于3的所有排列。无,写成0*0!=0
求和:1*3!+0*2!+1*1!+0*0!=7
所以位次的计算公式为X = a[n]*(n-1)! +a[n-1]*(n-2)! + … + a[1]*0!
#include<bits/stdc++.h>
#include<queue>
using namespace std; const int len = ; //状态共9! = 362880种
int visited[len] = {};//标记已有状态用来去重
int start[];//起始状态
int goal[];//目标状态
int factory[] = {, , , , , , , , , };//0到9的阶乘
int dir[][] = {{-, }, {, -}, {, }, {, }}; struct node{
int state[];//棋局状态按一维存放下来
int dis;//记录从起始状态移动到当前状态的步数
}; bool cantor(int str[], int n){
int result = ;
for(int i=; i<n; i++){
int cnt = ;
for(int j=i+; j<n; j++){
if(str[i] > str[j])
cnt ++;
}
result += cnt*factory[n-i-];
}
if(!visited[result]){
visited[result] = ;
return ;
}
return ;
} int BFS(){
node head, next;
memcpy(head.state, start, sizeof(head.state));//复制起始状态并插入队列
head.dis = ;
cantor(head.state, );
queue<node>q;
q.push(head); while(!q.empty()){
head = q.front();
q.pop();
int z;
for(z=; z<; z++)
if(head.state[z] == )//找到0
break;
int x = z % ;//将0的一维位置转化为二维的横纵坐标
int y = z / ;
for(int i=; i<; i++){
int newx = x + dir[i][];
int newy = y + dir[i][];
int newz = newx + *newy;//将0移动后重新转化为一维坐标
if(newx>= && newx< && newy>= && newy<){//避免越界
memcpy(&next, &head, sizeof(struct node));
swap(next.state[z], next.state[newz]);//复制原先状态后,改变0的位置
next.dis ++;
if(memcmp(next.state, goal, sizeof(next.state)) == )
return next.dis;
if(cantor(next.state, ))//查重
q.push(next);
}
}
}
return -;
} int main(){
for(int i=; i<; i++)
scanf("%d", start+i);
for(int i=; i<; i++)
scanf("%d", goal+i); int num = BFS();
if(num != -)
printf("%d\n",num);
else
printf("Impossible\n");
}
(1)用于存放状态图的以及步数的结构体
(2)用于移动的数组
(3)用于去重的标记数组
(4)提前算好阶乘存放于数组中
(5)康拓函数判重
(6)BFS函数:queue<node>q;node head, next;
(7)状态图中某数字方块的一维坐标和二维坐标的相互转化
(8)检查坐标是否合法
八数码问题多种解法:https://www.cnblogs.com/zufezzt/p/5659276.html
BFS-八数码问题与状态图搜索的更多相关文章
- BFS(八数码) POJ 1077 || HDOJ 1043 Eight
题目传送门1 2 题意:从无序到有序移动的方案,即最后成1 2 3 4 5 6 7 8 0 分析:八数码经典问题.POJ是一次,HDOJ是多次.因为康托展开还不会,也写不了什么,HDOJ需要从最后的状 ...
- HDU 1043 Eight 八数码问题 A*算法(经典问题)
HDU 1043 Eight 八数码问题(经典问题) 题意 经典问题,就不再进行解释了. 这里主要是给你一个状态,然后要你求其到达\(1,2,3,4,5,6,7,8,x\)的转移路径. 解题思路 这里 ...
- UVALive 6665 Dragonâs Cruller --BFS,类八数码问题
题意大概就是八数码问题,只不过把空格的移动方式改变了:空格能够向前或向后移动一格或三格(循环的). 分析:其实跟八数码问题差不多,用康托展开记录状态,bfs即可. 代码: #include <i ...
- [cdoj1380] Xiper的奇妙历险(3) (八数码问题 bfs + 预处理)
快要NOIP 2016 了,现在已经停课集训了.计划用10天来复习以前学习过的所有内容.首先就是搜索. 八数码是一道很经典的搜索题,普通的bfs就可求出.为了优化效率,我曾经用过康托展开来优化空间,甚 ...
- 八数码问题+路径寻找问题+bfs(隐式图的判重操作)
Δ路径寻找问题可以归结为隐式图的遍历,它的任务是找到一条凑够初始状态到终止问题的最优路径, 而不是像回溯法那样找到一个符合某些要求的解. 八数码问题就是路径查找问题背景下的经典训练题目. 程序框架 p ...
- HDU 1043 Eight (BFS·八数码·康托展开)
题意 输出八数码问题从给定状态到12345678x的路径 用康托展开将排列相应为整数 即这个排列在全部排列中的字典序 然后就是基础的BFS了 #include <bits/stdc++.h ...
- 【算法】BFS+哈希解决八数码问题
15拼图已经有超过100年; 即使你不叫这个名字知道的话,你已经看到了.它被构造成具有15滑动砖,每一个从1到15上,并且所有包装成4乘4帧与一个瓦块丢失.让我们把丢失的瓷砖“X”; 拼图的目的是安排 ...
- hdu-1043(八数码+bfs打表+康托展开)
参考文章:https://www.cnblogs.com/Inkblots/p/4846948.html 康托展开:https://blog.csdn.net/wbin233/article/deta ...
- 关于八数码问题中的状态判重的三种解决方法(编码、hash、<set>)
八数码问题搜索有非常多高效方法:如A*算法.双向广搜等 但在搜索过程中都会遇到同一个问题.那就是判重操作(假设反复就剪枝),怎样高效的判重是8数码问题中效率的关键 以下关于几种判重方法进行比較:编码. ...
随机推荐
- MSSQL sqlserver 统计"一个字符串"在"另一个字符串"中出现的次数的方法
转自 http://www.maomao365.com/?p=9858 摘要: 下文讲述sqlserver中最快获取一个字符串在另一个字符串中出现个数的方法分享 实验环境:sql server 20 ...
- js的reduce累加器
reduce为数组中每一个元素执行回调函数,不包括被删除或未被赋值的 https://www.jianshu.com/p/e375ba1cfc47
- idea 编译报错 Build completed with 1 error and 0 warnings in 2 s 113 ms
settings里java compiler改成正确版本 project structure里同样如此
- Excel开启宏以后保存是会提示安全警告,怎么取消
如果你用的(应该)是2007以上版本的话 请点左上角的EXCEL图标,EXCEL选项,信任中心,信任中心设置,个人信息选项,保存时从文件属性中删除个人信息前面的对号取消.确定就可以了. (补充:如果你 ...
- Electron – 基础学习(2): 项目打包成exe桌面应用 之electron-packager
项目创建完成,启动正常,接下来就是项目打包了.将测试Demo打包成exe桌面应用,点击exe文件,运行项目. 书接上文,创建项目有三种方式 Git拷贝.直接创建:通过electron社群提供的命令行工 ...
- iptables技术入门
1- 概述 ___ netfilter/iptables: IP 信息包过滤系统,实际由两个组件netfilter和iptable组成.可以对流入和流出服务器的数据包进行很惊喜的控制.主要工作在OSI ...
- TC SRM556 OldBridges
题意 有一个包含\(n\)个点的图,点的编号分别为\(0\)到\(n-1\).有若干双向边连接两个点,有些边可以经过无限次,有些边最多只能经过(双向)两次.Alice计划从\(a1\)到\(a2\)进 ...
- 论文阅读笔记(二十二)【CVPR2017】:See the Forest for the Trees: Joint Spatial and Temporal Recurrent Neural Networks for Video-based Person Re-identification
Introduction 在视频序列中,有些帧由于被严重遮挡,需要被尽可能的“忽略”掉,因此本文提出了时间注意力模型(temporal attention model,TAM),注重于更有相关性的帧. ...
- ex03
1. a heuristic function h(n): a heuristic value of n, that is the estimated cost of reaching goal fr ...
- Uva1640(统计数字出现的次数)
题意: 统计两个整数a,b之间各个数字(0~9)出现的次数,如1024和1032,他们之间的数字有1024 1025 1026 1027 1028 1029 1030 1031 1032 总共有10个 ...