∆ (triangle)
2.1 题目描述
给定一个无自环重边的无向图,求这个图的三元环1的个数以及补图2的三元环个数。
2.2 输入格式
第一行 2 个数 n, m ,分别表示图的点数、边数。
接下来 m 行,每行两个数 u, v ,表示一条连接 u, v 的无向边。
2.3 输出格式
一行两个数,依次表示原图的三元环个数以及补图的三元环的个数。
2.4 样例输入
5 5
1 2
1 3
2 3
2 4
3 4
2.5样例输出
2 1
2.6数据范围
对于 30% 的数据:n ≤ 100
对于 60% 的数据:m ≤ 500
对于 100% 的数据:n ≤ 10^5 , m ≤ 10^5
2.7评分方式
如果你两个数均输出正确,得 10 分。
否则如果两个数中任意一个正确或者两个数的和正确,得 6 分。 否则不得分。
注:
1大小为 3的环。即一个无序三元组 (x, y, z) 使得任意两点之间都有边
2一条连接(u, v)(u = v) 的边,如果在原图中出现了,那么在补图中不会出现,否则一定会在补图中出现。
题解:
题目中说两个数的和正确可以得分,是不是说明先求和是一个突破口呐?
对于一个完全图,三元环的数量是C(n,3),少了一些边,就少了一些三元环,少的三元环应该有至少一条边在原图中,至少一条边在补图中。
减少的三元环数量为:sigma(d[i]*(n-1-d[i]))/2 (d[i]为度数)
一开始我想不通为什么是除以2,然后我画了两个图,就发现了答案,每个三元环可以被两个点找到。
剩下的就是求原图中的三元环,有一个神奇的算法,和分段暴力有一丢丢类似吧。
将所有点分成两类:d[i]<sqrt(m)的和d[i]>sqrt(m)的.
先求包含第一类点的三元环个数. 由于边很少,所以枚举2条边即可.由于一个点的度不超过sqrt(m),所以一条边最多被枚到(sqrt(m))次,最多枚M条边,所以这个操作时O(m*sqrt(m))的.
再求不包含第一类点的三元环个数. 由于每条边贡献2个度,所以二类点的数量是O(sqrt(m))级的.直接枚举三个点,复杂度O((sqrt(m))^3)=O(m*sqrt(m))
所以算法总的复杂度是O(m*sqrt(m))的.
我先用了一个vector来判断点i与j是否有边,但是T掉了,然后get到了一个聪明的把一条边的两个节点一起hash的方法,就写了一个hash表水过去了。
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<set>
#define nn 100010
#define mod 1000007
#define base 2333
using namespace std;
namespace fastIO
{
#define buf_size 100000
bool error;
inline char gc()
{
static char buf[buf_size + 1],*l=buf,*r=buf;
if(l==r)
{
l=buf;
r=buf+fread(buf,1,buf_size,stdin);
if(l==r) {error = 1;return -1;}
}
return *l++;
}
inline bool blank(char ch) {return ch=='\n'||ch =='\t'||ch ==' '||ch =='\r'||error;}
inline bool getint(int &x)
{
char ch; int f = 1;
while (blank(ch = gc())); if (error) return false;
x = 0;
if (ch == '-') f=-1,ch=gc();
while (1){x = (x<<1) + (x<<3)+ch-'0';if(!isdigit(ch = gc())) break;}
x*=f;
return true;
}
inline void putint(long long x)
{
if(!x) {putchar('0'); return;}
if(x<0){x=-x; putchar('-');}
static int out[13];
register int len = 0;
while(x){out[++ len]=x%10; x/=10;}
while(len) putchar(out[len --]+'0');
}
#undef buf_size
}
using namespace fastIO;
int in[nn],fir[nn],nxt[nn<<1],to[nn<<1],a[1000007],b[1000007],head[1000007],next[1000007];
bool hash[1000007];
int e=0,inum=0;
void add(int u,int v)
{
nxt[++e]=fir[u];fir[u]=e;to[e]=v;
nxt[++e]=fir[v];fir[v]=e;to[e]=u;
}
long long c(long long n,int m)
{
long long an=(n-2)*(n-1)*n/6;
return an;
}
void addd(int u,int v)
{
int t=(u*base+v)%mod;
a[++inum]=u;b[inum]=v;next[inum]=head[t];head[t]=inum;
}
inline bool query(int u,int v)
{
int t=(u*base+v)%mod;
for (int p=head[t];p;p=next[p])
if (a[p]==u&&b[p]==v)
return 1;
return 0;
}
int main()
{
freopen("triangle.in","r",stdin);
freopen("triangle.out","w",stdout);
int n,m,u,v;
getint(n);getint(m);
long long all=0,sum=0;
for(register int i(1);i<=m;i++)
{
getint(u);getint(v);
addd(u,v);
add(u,v);
in[u]++;in[v]++;
}
for(register int i(1);i<=n;i++)
all+=in[i]*(n-1-in[i]);
all/=2;
all=c(n,3)-all;
for(register int i(1);i<=n;i++)
{
for(register int j=fir[i];j;j=nxt[j])
for(register int k=nxt[j];k;k=nxt[k])
{
if(query(to[j],to[k])||query(to[k],to[j]))
sum++;
}
}
putint(sum/3);putchar(' ');putint(all-sum/3);
return 0;
}
∆ (triangle)的更多相关文章
- [LeetCode] Triangle 三角形
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- [LeetCode] Pascal's Triangle II 杨辉三角之二
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...
- [LeetCode] Pascal's Triangle 杨辉三角
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...
- 【leetcode】Pascal's Triangle II
题目简述: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Retur ...
- 【leetcode】Pascal's Triangle
题目简述: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5 ...
- POJ 1163 The Triangle(简单动态规划)
http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissi ...
- Triangle - Delaunay Triangulator
Triangle - Delaunay Triangulator eryar@163.com Abstract. Triangle is a 2D quality mesh generator an ...
- LeetCode 118 Pascal's Triangle
Problem: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows ...
- LeetCode 119 Pascal's Triangle II
Problem: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Ret ...
- 【leetcode】Triangle (#120)
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
随机推荐
- C++ operator new和new operator的区别
new operator 当你写这种代码: string *ps = new string("Memory Management"); 你使用的new是new operator. ...
- 【笔记】LR录制方式和常用函数
本文为本人复习LR时,笔记整理.以备后续查阅. 注意:录制脚本时,选择不同的协议下录制时设置选项也是不相同的,我们这里介绍的是基于协议web(http/html)录制选项设置. 对于web(http/ ...
- css 垂直+水平居中
垂直+水平居中是一个老生常谈的问题了,现在就固定高度和不固定高度两种情况去讨论 1.父盒子固定高度[定位] 实现1: father-box: position:relative child-box:p ...
- iOS Status Bar变换
http://www.cocoachina.com/ios/20160718/17020.html 背景 iOS 中经常会有需要在某个界面改变状态栏颜色或者某个界面隐藏状态栏的需求.而改变状态栏颜色和 ...
- js中字符串的加密base64
base64编码主要用在传输,存储表示二进制的领域,还可以进行加密和解密.其实就是字符串的编码和解码 btoa与atob 只能加密ascii,不能加密汉字. var str = 'I LOVE YOU ...
- Microsoft: Get started with Dynamic Data Masking in SQL Server 2016 and Azure SQL
Dynamic Data Masking (DDM) is a new security feature in Microsoft SQL Server 2016 and Azure SQL DB. ...
- 数据挖掘算法R语言实现之决策树
数据挖掘算法R语言实现之决策树 最近,看到很多朋友问我如何用数据挖掘算法R语言实现之决策树,想要了解这方面的内容如下: > library("party")导入数据包 > ...
- python小练习--银行取款
银行取款 今天练习的小程序: #!/usr/bin/env python #-*- coding:utf-8 -*- import time tag=True while tag: name=inpu ...
- day39-Spring 11-Spring的AOP:基于AspectJ的XML配置方式
package cn.itcast.spring3.demo2; import org.aspectj.lang.ProceedingJoinPoint; /** * 切面类 * @author zh ...
- CSS面试题总结2(转)
1.你最喜欢的图片替换方法是什么,你如何选择使用. 图像替代,就是像我们在平时将文本添加到文本中,然后通过css隐藏文本并在它的位置上显示一个背景图片,这样,搜索引擎仍然可以搜到HTML文本,即使我们 ...