#region 灰度处理
/// <summary>
/// 将源图像灰度化,并转化为8位灰度图像。
/// </summary>
/// <param name="original"> 源图像。 </param>
/// <returns> 8位灰度图像。 </returns>
public static Bitmap RgbToGrayScale(Bitmap original)
{
if (original != null)
{
// 将源图像内存区域锁定
Rectangle rect = new Rectangle(, , original.Width, original.Height);
BitmapData bmpData = original.LockBits(rect, ImageLockMode.ReadOnly,
PixelFormat.Format24bppRgb); // 获取图像参数
int width = bmpData.Width;
int height = bmpData.Height;
int stride = bmpData.Stride; // 扫描线的宽度,比实际图片要大
int offset = stride - width * ; // 显示宽度与扫描线宽度的间隙
IntPtr ptr = bmpData.Scan0; // 获取bmpData的内存起始位置的指针
int scanBytesLength = stride * height; // 用stride宽度,表示这是内存区域的大小 // 分别设置两个位置指针,指向源数组和目标数组
int posScan = , posDst = ;
byte[] rgbValues = new byte[scanBytesLength]; // 为目标数组分配内存
Marshal.Copy(ptr, rgbValues, , scanBytesLength); // 将图像数据拷贝到rgbValues中
// 分配灰度数组
byte[] grayValues = new byte[width * height]; // 不含未用空间。
// 计算灰度数组 byte blue, green, red, YUI; for (int i = ; i < height; i++)
{
for (int j = ; j < width; j++)
{ blue = rgbValues[posScan];
green = rgbValues[posScan + ];
red = rgbValues[posScan + ];
YUI = (byte)(0.229 * red + 0.587 * green + 0.144 * blue);
//grayValues[posDst] = (byte)((blue + green + red) / 3);
grayValues[posDst] = YUI;
posScan += ;
posDst++; }
// 跳过图像数据每行未用空间的字节,length = stride - width * bytePerPixel
posScan += offset;
} // 内存解锁
Marshal.Copy(rgbValues, , ptr, scanBytesLength);
original.UnlockBits(bmpData); // 解锁内存区域 // 构建8位灰度位图
Bitmap retBitmap = BuiltGrayBitmap(grayValues, width, height);
return retBitmap;
}
else
{
return null;
}
} /// <summary>
/// 用灰度数组新建一个8位灰度图像。
/// </summary>
/// <param name="rawValues"> 灰度数组(length = width * height)。 </param>
/// <param name="width"> 图像宽度。 </param>
/// <param name="height"> 图像高度。 </param>
/// <returns> 新建的8位灰度位图。 </returns>
private static Bitmap BuiltGrayBitmap(byte[] rawValues, int width, int height)
{
// 新建一个8位灰度位图,并锁定内存区域操作
Bitmap bitmap = new Bitmap(width, height, PixelFormat.Format8bppIndexed);
BitmapData bmpData = bitmap.LockBits(new Rectangle(, , width, height),
ImageLockMode.WriteOnly, PixelFormat.Format8bppIndexed); // 计算图像参数
int offset = bmpData.Stride - bmpData.Width; // 计算每行未用空间字节数
IntPtr ptr = bmpData.Scan0; // 获取首地址
int scanBytes = bmpData.Stride * bmpData.Height; // 图像字节数 = 扫描字节数 * 高度
byte[] grayValues = new byte[scanBytes]; // 为图像数据分配内存 // 为图像数据赋值
int posSrc = , posScan = ; // rawValues和grayValues的索引
for (int i = ; i < height; i++)
{
for (int j = ; j < width; j++)
{
grayValues[posScan++] = rawValues[posSrc++];
}
// 跳过图像数据每行未用空间的字节,length = stride - width * bytePerPixel
posScan += offset;
} // 内存解锁
Marshal.Copy(grayValues, , ptr, scanBytes);
bitmap.UnlockBits(bmpData); // 解锁内存区域 // 修改生成位图的索引表,从伪彩修改为灰度
ColorPalette palette;
// 获取一个Format8bppIndexed格式图像的Palette对象
using (Bitmap bmp = new Bitmap(, , PixelFormat.Format8bppIndexed))
{
palette = bmp.Palette;
}
for (int i = ; i < ; i++)
{
palette.Entries[i] = Color.FromArgb(i, i, i);
}
// 修改生成位图的索引表
bitmap.Palette = palette; return bitmap;
}
#endregion

C#图片二值化处理(位深度8→位深度1)

#region 二值化
/*
1位深度图像 颜色表数组255个元素 只有用前两个 0对应0 1对应255
1位深度图像每个像素占一位
8位深度图像每个像素占一个字节 是1位的8倍
*/
/// <summary>
/// 将源灰度图像二值化,并转化为1位二值图像。
/// </summary>
/// <param name="bmp"> 源灰度图像。 </param>
/// <returns> 1位二值图像。 </returns>
public static Bitmap GTo2Bit(Bitmap bmp)
{
if (bmp != null)
{
// 将源图像内存区域锁定
Rectangle rect = new Rectangle(, , bmp.Width, bmp.Height);
BitmapData bmpData = bmp.LockBits(rect, ImageLockMode.ReadOnly,
PixelFormat.Format8bppIndexed); // 获取图像参数
int leng, offset_1bit = ;
int width = bmpData.Width;
int height = bmpData.Height;
int stride = bmpData.Stride; // 扫描线的宽度,比实际图片要大
int offset = stride - width; // 显示宽度与扫描线宽度的间隙
IntPtr ptr = bmpData.Scan0; // 获取bmpData的内存起始位置的指针
int scanBytesLength = stride * height; // 用stride宽度,表示这是内存区域的大小
if (width % == )
{
leng = width / ;
}
else
{
leng = width / + ( - (width / % ));
if (width % != )
{
offset_1bit = leng - width / ;
}
else
{
offset_1bit = leng - width / ;
}
} // 分别设置两个位置指针,指向源数组和目标数组
int posScan = , posDst = ;
byte[] rgbValues = new byte[scanBytesLength]; // 为目标数组分配内存
Marshal.Copy(ptr, rgbValues, , scanBytesLength); // 将图像数据拷贝到rgbValues中
// 分配二值数组
byte[] grayValues = new byte[leng * height]; // 不含未用空间。
// 计算二值数组
int x, v, t = ;
for (int i = ; i < height; i++)
{
for (x = ; x < width; x++)
{
v = rgbValues[posScan];
t = (t << ) | (v > ? : ); if (x % == )
{
grayValues[posDst] = (byte)t;
posDst++;
t = ;
}
posScan++;
} if ((x %= ) != )
{
t <<= - x;
grayValues[posDst] = (byte)t;
}
// 跳过图像数据每行未用空间的字节,length = stride - width * bytePerPixel
posScan += offset;
posDst += offset_1bit;
} // 内存解锁
Marshal.Copy(rgbValues, , ptr, scanBytesLength);
bmp.UnlockBits(bmpData); // 解锁内存区域 // 构建1位二值位图
Bitmap retBitmap = twoBit(grayValues, width, height);
return retBitmap;
}
else
{
return null;
}
} /// <summary>
/// 用二值数组新建一个1位二值图像。
/// </summary>
/// <param name="rawValues"> 二值数组(length = width * height)。 </param>
/// <param name="width"> 图像宽度。 </param>
/// <param name="height"> 图像高度。 </param>
/// <returns> 新建的1位二值位图。 </returns>
private static Bitmap twoBit(byte[] rawValues, int width, int height)
{
// 新建一个1位二值位图,并锁定内存区域操作
Bitmap bitmap = new Bitmap(width, height, PixelFormat.Format1bppIndexed);
BitmapData bmpData = bitmap.LockBits(new Rectangle(, , width, height),
ImageLockMode.WriteOnly, PixelFormat.Format1bppIndexed); // 计算图像参数
int offset = bmpData.Stride - bmpData.Width / ; // 计算每行未用空间字节数
IntPtr ptr = bmpData.Scan0; // 获取首地址
int scanBytes = bmpData.Stride * bmpData.Height; // 图像字节数 = 扫描字节数 * 高度
byte[] grayValues = new byte[scanBytes]; // 为图像数据分配内存 // 为图像数据赋值
int posScan = ; // rawValues和grayValues的索引
for (int i = ; i < height; i++)
{
for (int j = ; j < bmpData.Width / ; j++)
{
grayValues[posScan] = rawValues[posScan];
posScan++;
}
// 跳过图像数据每行未用空间的字节,length = stride - width * bytePerPixel
posScan += offset;
} // 内存解锁
Marshal.Copy(grayValues, , ptr, scanBytes);
bitmap.UnlockBits(bmpData); // 解锁内存区域 // 修改生成位图的索引表
ColorPalette palette;
// 获取一个Format8bppIndexed格式图像的Palette对象
using (Bitmap bmp = new Bitmap(, , PixelFormat.Format1bppIndexed))
{
palette = bmp.Palette;
}
for (int i = ; i < ; i = +)
{
palette.Entries[i] = Color.FromArgb(i, i, i);
}
// 修改生成位图的索引表
bitmap.Palette = palette; return bitmap;
}
#endregion

C#图片灰度处理(位深度24→位深度8)的更多相关文章

  1. C#图片灰度处理(位深度24→位深度8),用灰度数组byte[]新建一个8位灰度图像Bitmap 。

    原文:C#图片灰度处理(位深度24→位深度8) #region 灰度处理 /// <summary> /// 将源图像灰度化,并转化为8位灰度图像. /// </summary> ...

  2. C#图片灰度处理(位深度24→位深度8)、C#图片二值化处理(位深度8→位深度1)

    C#图片灰度处理(位深度24→位深度8) #region 灰度处理 /// <summary> /// 将源图像灰度化,并转化为8位灰度图像. /// </summary> / ...

  3. 图像转置的SSE优化(支持8位、24位、32位),提速4-6倍。

    一.前言 转置操作在很多算法上都有着广泛的应用,在数学上矩阵转置更有着特殊的意义.而在图像处理上,如果说图像数据本身的转置,除了显示外,本身并无特殊含义,但是在某些情况下,确能有效的提高算法效率,比如 ...

  4. SSE图像算法优化系列四:图像转置的SSE优化(支持8位、24位、32位),提速4-6倍

    一.前言 转置操作在很多算法上都有着广泛的应用,在数学上矩阵转置更有着特殊的意义.而在图像处理上,如果说图像数据本身的转置,除了显示外,本身并无特殊含义,但是在某些情况下,确能有效的提高算法效率,比如 ...

  5. MD5值转换(Hex 32位 <-> base64 24位)

    关于MD5值的原理本文不在介绍,本文主要介绍MD5值的两种编码的相互转换(32位和BASE64编码的24位),实际应用过程中经常会涉及到两种编码的相互转换.快熟使用工具tomeko.net. C#示例 ...

  6. C#保存图片到文件夹区分8位和24位

    1.保存图像--24位位图(显示的图像,包括增加结果到界面上的数据) Image image2 = default(Image); image2 = cogRecordDisplay1.CreateC ...

  7. 怎么把PNG图的位深度24位变成32位

    在PS里把图片的变成层模式,不透明度设置成99%,在保存成PNG

  8. 颜色模式中8位,16位,24位,32位色彩是什么意思?会有什么区别?计算机颜色格式( 8位 16位 24位 32位色)<转>

    颜色模式中8位,16位,24位,32位色彩是什么意思?会有什么区别简单地说这里说的位数和windows系统显示器设置中的颜色位数是一样的.表示的是能够显示出来的颜色的多少. 8位的意思是说,能够显示出 ...

  9. C# AES的128位、192位、256位加密

    C# AES的128位.192位.256位加密   AES加密原理,这里就不解释了,自行百度.这里主要细说AES的CBC加密模式下的128位.192位.256位加密区别,参考 对称加密和分组加密中的四 ...

随机推荐

  1. 流媒体协议介绍(rtp/rtcp/rtsp/rtmp/mms/hls

    http://blog.csdn.net/tttyd/article/details/12032357 RTP           参考文档 RFC3550/RFC3551 Real-time Tra ...

  2. HDU 4313 Matrix 树形dp

    题意: 给定n个点的树,m个黑点 以下n-1行给出边和删除这条边的费用 以下m个黑点的点标[0,n-1] 删除一些边使得随意2个黑点都不连通. 问删除的最小花费. 思路: 树形dp 每一个点有2个状态 ...

  3. Mint UI 使用指南

    上来直接在webpack里将Mint UI引入项目,发现各种问题.饿了么组件库文档太坑了,好多地方写错,有些该说明的地方没说,比如例子里单文件.vue组件里用的类post-css处理器,我一直使用SA ...

  4. WPF中 MVVM模式的Slider Binding.

    对于Button的Command的绑定可以通过实现ICommand接口来进行,但是Slider并没有Command属性. 另外如果要实现MVVM模式的话,需要将一些Method和Slider的Even ...

  5. OpenCV For iOS 1:&#160;连接OpenCV 3.0

    本文的内容參考Instant OpenCV for iOS结合最新的开发平台完毕. 本系列文章採用的的开发环境为: 1)Xcode 6 2)OpenCV for iOS 3.0.0 alpha 接下来 ...

  6. twemproxy

    twemproxy架构分析——剖析twemproxy代码前编   twemproxy背景 在业务量剧增的今天,单台高速缓存服务器已经无法满足业务的需求, 而相较于大容量SSD数据存储方案,缓存具备速度 ...

  7. OpenCV图像的基础叠加

    程序及分析 /* * FileName : blend.cpp * Author : xiahouzuoxin @163.com * Version : v1.0 * Date : Mon 28 Ju ...

  8. Maven环境下Poi的使用

    Poi的使用方法,网上还是挺多的,官网也有教程. 附一个比较全的: http://www.cnblogs.com/vTree/archive/2011/11/30/2268721.html 需要说明的 ...

  9. Windows安装Linux子系统--安装GUI界面

    原文:Windows安装Linux子系统--安装GUI界面   前段时间发现Windows可以安装Linux子系统了,恰逢电脑换了固态,还没装Linux,不如趁机体验一番! 1.准备工作 1.1.打开 ...

  10. 制作WPF时钟之2

    原文:制作WPF时钟之2 前段时间写了一篇"制作简单的WPF时钟",今天再制作了一个更漂亮的WPF时钟,目前仅完成了设计部分,准备将它制作成一个无边框窗体式的时钟. 效果图:   ...