[TJOI2014] [Bzoj3996] 线性代数 [网络流,最小割]
由原式,可以推出D=Σ(i=1,n,Σ(j=1,n,A[i]*A[j]*B[i][j]))-Σ(i=1,n,A[i]*C[i])
$D=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}A[i]*A[j]*B[i][j]-\sum\limits_{i=1}^{n}A[i]*C[i]$
,故建图方法如下:由源点像第一层n*n个点连边,边权为$B[i][j]$,由第一层像第二层连边,边权正无穷,由第二层向汇点连边,边权$C[i]$。最终答案为$\sum B-MAXFLOW$。
推导过程:
(A * B - C) * AT
(1*n) (n*n) (1*n) (n*1)
=A*B * AT - C * AT
(1*n) (n*1) (1*1)
令$P[i][j]=\sum\limits_{k=1}^{n}A[i][k]*B[k][j]$
$A^T[i][j]=A[j][i]=A[i](j=1)$
原式=$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}A[i]*B[i][j]*A[j]-\sum\limits_{i=1}^{n}A[i]*C[i]$
参考HZWER博客:http://hzwer.com/6814.html
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <queue> using namespace std; template<const int _n>
struct Edge
{
struct Edge_base { int to,next,w; }e[_n];
int p[_n],cnt;
Edge() { clear(); }
int start(const int x) { return p[x]; }
void insert(const int x,const int y,const int z)
{ e[++cnt].to=y; e[cnt].next=p[x]; e[cnt].w=z; p[x]=cnt; return ; }
void clear() { cnt=,memset(p,,sizeof(p)); }
Edge_base& operator[](const int x) { return e[x]; }
}; int SSS,TTT,cur[];
int n,tot,level[];
Edge<> e; bool Bfs(const int S)
{
int i,t;
queue<int> Q;
memset(level,,sizeof(int)*(n+n*n+));
level[S]=;
Q.push(S);
while(!Q.empty())
{
t=Q.front();Q.pop();
for(i=e.start(t);i;i=e[i].next)
{
if(!level[e[i].to] && e[i].w)
{
level[e[i].to]=level[t]+;
Q.push(e[i].to);
}
}
}
return level[TTT];
} int Dfs(const int S,const int bk)
{
if(S==TTT)return bk;
int rest=bk;
for(int &i=cur[S];i;i=e[i].next)
{
if(level[e[i].to]==level[S]+ && e[i].w)
{
int flow=Dfs(e[i].to,min(rest,e[i].w));
e[i].w-=flow;
e[i^].w+=flow;
if((rest-=flow)<=)break;
}
}
if(bk==rest)level[S]=;
return bk-rest;
} int Dinic()
{
int flow=;
while(Bfs(SSS))
{
memcpy(cur,e.p,sizeof(int)*(n+n*n+));
flow+=Dfs(SSS,0x3f3f3f3f);
}
return flow;
} int getint()
{
int data=;
char ch=getchar();
while(ch<'' || ch>'')ch=getchar();
while(ch>='' && ch<='')data=data*+ch-,ch=getchar();
return data;
} int main()
{
int i,j,x,Sum=; n=getint();
tot=n;SSS=tot+n*n+;TTT=SSS+;
for(i=;i<=n;++i)
{
for(j=;j<=n;++j)
{
x=getint();++tot;
e.insert(SSS,tot,x);
e.insert(tot,SSS,);
e.insert(tot,i,0x3f3f3f3f);
e.insert(i,tot,);
e.insert(tot,j,0x3f3f3f3f);
e.insert(j,tot,);
Sum+=x;
}
} for(i=;i<=n;++i)
{
x=getint();
e.insert(i,TTT,x);
e.insert(TTT,i,);
} printf("%d\n",Sum-Dinic()); return ;
}
[TJOI2014] [Bzoj3996] 线性代数 [网络流,最小割]的更多相关文章
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- 【题解】 bzoj3894: 文理分科 (网络流/最小割)
bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...
- 【bzoj3774】最优选择 网络流最小割
题目描述 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的.一个点如果被选择了,那么可以得到Bij ...
- 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割
题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...
- 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan
题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...
- 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割
题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...
- 【bzoj4177】Mike的农场 网络流最小割
题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i] ...
- 【bzoj3438】小M的作物 网络流最小割
原文地址:http://www.cnblogs.com/GXZlegend/p/6801522.html 题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物 ...
- 【bzoj3144】[Hnoi2013]切糕 网络流最小割
题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
随机推荐
- POJ 3268 最短路应用
POJ3268 题意很简单 正向图跑一遍SPFA 反向图再跑一边SPFA 找最大值即可. #include<iostream> #include<cstdio> #includ ...
- App上架流程 & 上架被拒10大原因
上架前预热 先登陆自己的开发者账号(自己提前注册好 iOS 开发者账号,这里假设你已经拥有了一个 iOS 开发者账号),进入这个页面:https://developer.apple.com/accou ...
- E20170930-hm
parse vt. 从语法上描述或分析(词句等);
- myeclipse配背景色
1:使jsp,html等页面为纯黑色. 2:发现JS的背景颜色还是默认的.而且还是块状的.将它设置背景为黑色的. *效果图: 参考:http://blog.csdn.net/ltqwby/articl ...
- $CF1141C Polycarp Restores Permutation$
\(problem\) 这题的大致意思就是已知数值差值 求1-n的排列 如果能构成排列 则输出这个排列.如果不能则输出-1 排列的值都是 大于1 而小于n的 而且没有相同的数字. 这题最关键的是 怎么 ...
- 【BZOJ3328】PYXFIB(数学)
什么都不会的数学蒻菜瑟瑟发抖--Orz橙子(和兔子) 题目: BZOJ3328 分析: 橙子给我安利的数学题--(然后我就看着他因为矩阵乘法多模了一次卡了一天常数qwq表示同情) 先考虑一个子问题:求 ...
- ACM_Mystery
Mystery Time Limit: 2000/1000ms (Java/Others) Problem Description: No Description Input: The first l ...
- JSP所需要掌握的部分
JSP基本语法 指令 <%@ 指令%> JSP指令是JSP的引擎 主要的两种指令是page和include(taglib) <%@ page import="java.ut ...
- 笨拙而诡异的 Oracle
有这样一段 SQL 代码: 通过 C# 获取查询结果: SQL 代码中有两个参数,且都是字符串类型,以上的 C# 代码是生成 Oracle SQL 代码所需要的参数.运行结果如下: 居然发生 ...
- Spring.net(v1.3.2) 官网API-第一章 前言
虽然有很好的工具和技术,但是开发软件应用仍然是很困难的.Spring为构建企业级应用提供了一个轻量级的解决方案,Spring提供了一个统一的.透明的方式去配置你的应用,和将AOP集成到你的软件中.Sp ...