Instructions

In this kata, you must create a digital root function.

A digital root is the recursive sum of all the digits in a number. Given n, take the sum of the digits of n. If that value has more than one digit, continue reducing in this way until a single-digit number is produced. This is only applicable to the natural numbers.

Here's how it works:

digital_root(16)
=> 1 + 6
=> 7 digital_root(942)
=> 9 + 4 + 2
=> 15 ...
=> 1 + 5
=> 6 digital_root(132189)
=> 1 + 3 + 2 + 1 + 8 + 9
=> 24 ...
=> 2 + 4
=> 6 digital_root(493193)
=> 4 + 9 + 3 + 1 + 9 + 3
=> 29 ...
=> 2 + 9
=> 11 ...
=> 1 + 1
=> 2

My solution:

def digital_root(n):
lst = [int(x) for x in str(n)]
result = sum(lst)
if result < 10:
return result
else:
return digital_root(result)

Best solution:

def digital_root(n):
return n if n < 10 else digital_root(sum(map(int,str(n))))

[codewars_python]Sum of Digits / Digital Root的更多相关文章

  1. Sum of Digits / Digital Root

    Sum of Digits / Digital Root In this kata, you must create a digital root function. A digital root i ...

  2. digital root问题

    问题阐述会是这样的: Given a non-negative integer num, repeatedly add all its digits until the result has only ...

  3. 快速切题 sgu118. Digital Root 秦九韶公式

    118. Digital Root time limit per test: 0.25 sec. memory limit per test: 4096 KB Let f(n) be a sum of ...

  4. Codeforces Beta Round #10 C. Digital Root 数学

    C. Digital Root 题目连接: http://www.codeforces.com/contest/10/problem/C Description Not long ago Billy ...

  5. Digital Root 的推导

    背景 在LeetCode上遇到这道题:Add Digits 大意是给一个数,把它各位数字相加得到一个数,如果这个数小于10就返回,不然继续 addDigits(这个相加得到的数). 题目很简单,但是如 ...

  6. codeforces 10C Digital Root(非原创)

    Not long ago Billy came across such a problem, where there were given three natural numbers A, B and ...

  7. 数字根(digital root)

    来源:LeetCode 258  Add Dights Question:Given a non-negative integer  num , repeatedly add all its digi ...

  8. 【HDOJ】4351 Digital root

    digital root = n==0 ? 0 : n%9==0 ? 9:n%9;可以简单证明一下n = a0*n^0 + a1*n^1 + ... + ak * n^kn%9 = a0+a1+..+ ...

  9. 树根 Digital root

    数根 (又称数字根Digital root)是自然数的一种性质.换句话说.每一个自然数都有一个数根.数根是将一正整数的各个位数相加(即横向相加),若加完后的值大于等于10的话,则继续将各位数进行横向相 ...

随机推荐

  1. STL_算法_Heap算法(堆排)(精)

    C++ Primer 学习中. . . 简单记录下我的学习过程 (代码为主) /***************************************** STL-算法--Heap算法 堆排序 ...

  2. 反弹木马——本质上就是一个开80端口的CS程序,伪造自己在浏览网页

    反弹端口型木马分析了防火墙的特性后发现:防火墙对于连入的链接往往会进行非常严格的过滤,但是对于连出的链接却疏于防范.于是,与一般的木马相反,反弹端口型木马的服务端(被控制端)使用主动端口,客户端(控制 ...

  3. AvtiveMQ 参考

    推荐学习:https://www.cnblogs.com/zhuxiaojie/p/5564187.html#autoid-2-1-0

  4. Linux基础04

    ** Linux基本操作常用命令(四) ** Linux系统管理命令 1.top:查看系统资源,每隔三秒刷新一次,按q:退出浏览状态 2.free:查看内存信息,-m,以MB单位显示 3.netsta ...

  5. VS导出方法名和方法备注的方法

    VS导出方法名和方法备注的方法 方法一: 只能导出图片格式的UML 类图 1.点击查看类图 2.在空白处点击讲关系导出为图像 方法二: 是把整个类库的方法名都罗列出来 这个方便整理一些 具体方法如下 ...

  6. AngularJs轻松入门(六)表单校验

    表单数据的校验对于提高WEB安全性意义不大,因为服务器接收到的请求不一定来自我们的前端页面,有可能来自别的站点,黑客可以自己做一个表单,把数据提交到我们的服务器(即跨站伪造请求),这样就绕过了前端页面 ...

  7. <Sicily>Pair

    一.题目描述 The N cities of Estiah are connected by N-1 roads. The roads are built in a way that it's alw ...

  8. UI Framework-1: UI Development Practices

    UI Development Practices Guidelines Principles for developing for Chrome. These best practices cente ...

  9. linux安装memcacehed

        1.wget http://www.danga.com/memcached/dist/memcached-1.2.5.tar.gz     2.wget http://www.monkey.o ...

  10. Git强制覆盖master分支

    在开发中,通常会保持两个分支master分支和develop分支,但是如果因为develop上面迭代太多而没有及时维护master,最后想丢弃master而直接将测试确认过的develop强推到mas ...