HDU 6069 Counting Divisors(2017 Multi-University Training Contest - Team 4 )
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<cstring>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<algorithm>
#include<string>
#define ll long long
#define eps 1e-10
#define LL unsigned long long
using namespace std;
const int maxn=+;
const int mod=;
int vis[maxn];
int prim[maxn];
ll a[maxn];
ll b[maxn];
int len;
void get_prim()
{
memset(vis,,sizeof(vis));
int m=sqrt(maxn+0.5);
for(int i=;i<=m;i++)
if(vis[i]==)
for(int j=i*i;j<=maxn;j+=i)
vis[j]=;
len=;
for(int i=;i<=maxn;i++)
if(vis[i]==)
prim[len++]=i;
}
int main()
{
int t;
ll l,r,k;
get_prim();
scanf("%d",&t);
while(t--)
{
scanf("%lld%lld%lld",&l,&r,&k);
for(int i=;i<maxn;i++)
{
a[i]=;
b[i]=i+l;
}
for(int i=;i<len;i++)
{
ll cnt=l;
if(l%prim[i])cnt=l+prim[i]-l%prim[i];
for(ll j=cnt;j<=r;j+=prim[i])
{
int count=;
while(b[j-l]%prim[i]==)
{
count++;
b[j-l]/=prim[i];
}
a[j-l]=((k*count+)%mod*a[j-l])%mod;
}
}
ll ans=;
for(int i=;i<=r-l;i++)
if(b[i]>)
a[i]=(a[i]*(k+))%mod;
for(int i=;i<=r-l;i++)
{
ans=(ans+a[i])%mod;
}
printf("%lld\n",ans);
}
return ;
}
HDU 6069 Counting Divisors(2017 Multi-University Training Contest - Team 4 )的更多相关文章
- HDU 6069 Counting Divisors —— 2017 Multi-University Training 4
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- HDU 6069 Counting Divisors
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- hdu 6069 Counting Divisors(求因子的个数)
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- hdu 6069 Counting Divisors 筛法
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- HDU 6069 Counting Divisors(唯一分解定理+因子数)
http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 思路: 根据唯一分解定理,$n={a_{1}}^{p1}*{a2_{}}^{p2}...*{a_{ ...
- 2017ACM暑期多校联合训练 - Team 4 1003 HDU 6069 Counting Divisors (区间素数筛选+因子数)
题目链接 Problem Description In mathematics, the function d(n) denotes the number of divisors of positiv ...
- HDU 6069 Counting Divisors (素数+筛法)
题意:给定 l,r,k,让你求,其中 l <= r <= 1e12, r-l <= 1e6, k <= 1e7. 析:首先这个题肯定不能暴力,但是给定的区间较小,可以考虑筛选, ...
- HDU 6069 Counting Divisors(区间素数筛法)
题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K ...
- hdu 6069 Counting divisors 公式+区间筛
比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p1^c1*p2^c2...p ...
随机推荐
- html5——语义标签
传统布局 <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF- ...
- Android中ViewPager动态创建的ImageView铺满屏幕
ImageView imageView=new ImageView(context); imageView.setScaleType(ScaleType.FIT_XY);//铺满屏幕
- microsoft ajax registered - to fix microsoft ajax update panel post back
<dnn:DnnScriptBlock runat="server"> <script type="text/javascript"& ...
- C# 字符串的入门
1."@"表示字符串中的"\"不当成转义符. 2.转义符或者特殊处理的一些字符只是针对于代码中直接写出的字符串中,对于程序运行中读取出来的转义符或者特殊处理的字 ...
- JS监听事件错误:Uncaught TypeError: xx(函数名)is not a function at HTMLInputElement.onclick
事件监听一直出错,提示已定义的函数名不是一个函数,折腾了好久才想到,原来是函数名和JS内部关键字重名造成的. 以前也遇到过这种情况,但因为发生的概率比较小,就没太在意,但是这次感觉这方面确实需要注意, ...
- Cesium学习笔记(五):3D 模型 (http://blog.csdn.net/umgsoil/article/details/74572877)
Cesium支持3D模型,包括关键帧动画,皮肤的改变还有单个节点的选择等,Cesium还提供了了一个基于网络的工具,将COLLADA模型转换为glTF,方便和优化模型添加 还记得我们在实体添加的时候添 ...
- P1638 逛画展
题目描述 博览馆正在展出由世上最佳的 M 位画家所画的图画. wangjy想到博览馆去看这几位大师的作品. 可是,那里的博览馆有一个很奇怪的规定,就是在购买门票时必须说明两个数字, a和b,代表他要看 ...
- Python 元组和列表
Python 元组 Python的元组与列表类似,不同之处在于元组的元素不能修改. 元组使用小括号,列表使用方括号. 元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可. 如下实例: tup1 ...
- go 语言优势
一:为什么用Go来做抽奖系统 1.Go vs PHP/JAVA ①:高并发,Go协程优于PHP多进程,JAVA多线程模式 ②:高并发,编译后的二进制优于PHP解释型,JAVA虚拟机 3:高效网络模型 ...
- 【codeforces 509B】Painting Pebbles
[题目链接]:http://codeforces.com/contest/509/problem/B [题意] 给n鹅卵石染色; 有k种颜色可供选择; 问你有没有染色方案; 使得各个堆的鹅卵石里面,第 ...