B1260 [CQOI2007]涂色paint 区间dp
这个题和我一开始想的区别不是很大,但是要我独自做出来还是有一些难度。
每一次涂色 只有这两种可能:
1) 把一段未被 覆盖过的区间 涂成 * 色
2) 把一段被一种颜色覆盖的区间涂成 * 色 (并且 涂色区间 的两端 同为 被覆盖区间的颜色, 不然就是第一种了)
这种 dp 都要 存一个 f[i][j] , 代表 i 到 j 这段区间 最少涂色多少次, f[1][n] 即为 答案。
计算 f[i][j] 的时候呢, 也是有两种可能:
1) 先涂 左边的一段 (右边为空), 再涂 右边的一段, 即为 min(f[i][k] + f[k + 1][j]) (i <= k < j)
2) 如果 i, j 颜色相同, 染色方案 可以为 f[p][q] + 1 (p 为 i 右边第一个与 i 不同的颜色, q 为 j 左边第一个 与 j 不同的颜色)
题干:
Description
假设你有一条长度为5的木版,初始时没有涂过任何颜色。你希望把它的5个单位长度分别涂上红、绿、蓝、绿、红色,用一个长度为5的字符串表示这个目标:RGBGR。 每次你可以把一段连续的木版涂成一个给定的颜色,后涂的颜色覆盖先涂的颜色。例如第一次把木版涂成RRRRR,第二次涂成RGGGR,第三次涂成RGBGR,达到目标。 用尽量少的涂色次数达到目标。
Input
输入仅一行,包含一个长度为n的字符串,即涂色目标。字符串中的每个字符都是一个大写字母,不同的字母代表不同颜色,相同的字母代表相同颜色。
Output
仅一行,包含一个数,即最少的涂色次数。
Sample Input
Sample Output
【样例输入1】
AAAAA
【样例输入1】
RGBGR
【样例输出1】 【样例输出1】 HINT %的数据满足:<=n<=
%的数据满足:<=n<=
Source
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
char s[];
int dp[][];
int main()
{
scanf("%s",s + );
int n = strlen(s + );
memset(dp,,sizeof(dp));
// cout<<n<<endl;
duke(i,,n)
{
dp[i][i] = ;
}
duke(l,,n - )
{
duke(i,,n)
{
int j = i + l;
if(j > n)
break;
if(s[i] == s[j])
{
if(l == )
dp[i][j] = ;
else
{
dp[i][j] = min(dp[i + ][j],min(dp[i][j - ],dp[i + ][j - ] + ));
}
}
else
{
duke(k,i,j - )
{
dp[i][j] = min(dp[i][j],dp[i][k] + dp[k + ][j]);
}
}
}
}
printf("%d\n",dp[][n]);
return ;
}
B1260 [CQOI2007]涂色paint 区间dp的更多相关文章
- BZOJ 1260: [CQOI2007]涂色paint( 区间dp )
区间dp.. dp( l , r ) 表示让 [ l , r ] 这个区间都变成目标颜色的最少涂色次数. 考虑转移 : l == r 则 dp( l , r ) = 1 ( 显然 ) s[ l ] = ...
- [BZOJ1260][CQOI2007]涂色paint 区间dp
1260: [CQOI2007]涂色paint Time Limit: 30 Sec Memory Limit: 64 MB Submit: 1575 Solved: 955 [Submit][S ...
- 【bzoj1260】[CQOI2007]涂色paint 区间dp
题目描述 给出一个序列,每次可以给一段染成同一种颜色,问最少要染多少次能够染成给定方案. 输入 输入仅一行,包含一个长度为n的字符串,即涂色目标.字符串中的每个字符都是一个大写字母,不同的字母代表不同 ...
- CQOI2007 涂色 paint (区间dp)
听说这道题是当年省选题 于是兴致勃勃拿来做了做 至于如何想到思路... 事实上没想象中那么简单... 脑阔挺疼的... (一开始都没看出来是区间dp) 想到可以区间dp,然后就似乎没啥大问题 枚举区间 ...
- 【BZOJ-1260】涂色paint 区间DP
1260: [CQOI2007]涂色paint Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 1147 Solved: 698[Submit][Sta ...
- 1260. [CQOI2007]涂色【区间DP】
Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续 ...
- BZOJ_1260_[CQOI2007]涂色paint _区间DP
BZOJ_1260_[CQOI2007]涂色paint _区间DP 题意: 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字 ...
- [BZOJ 1260][CQOI2007]涂色paint 题解(区间DP)
[BZOJ 1260][CQOI2007]涂色paint Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为 ...
- BZOJ1260 CQOI2007 涂色paint 【区间DP】
BZOJ1260 CQOI2007 涂色paint Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字 ...
随机推荐
- swift-自定义TabBar工具栏
class EBTAppDelegate: UIResponder, UIApplicationDelegate { var window: UIWindow? func application(ap ...
- Java上传视频
页面: 上传文件时的关键词:enctype="multipart/form-data" <%@ page language="java" import=& ...
- AdaBoost--从原理到实现(Code:Python)
本文对原文有修改,若有疑虑,请移步原作者. 原文链接:blog.csdn.net/dark_scope/article/details/14103983 集成方法在函数模型上等价于一个多层神经网络, ...
- Android读写文件
1.从resource中的raw文件夹中获取文件并读取数据(资源文件只能读不能写) String res = ""; try{ InputStream in = getResour ...
- 新书《计算机图形学基础(OpenGL版)》PPT已发布
为方便有些老师提前备课,1-10章所有章节已发布到本博客中. 欢迎大家下载使用,也欢迎大家给我们的新书反馈与意见,谢谢!
- An interesting scroll background------ActionScript3.0
package { /* *@ ClassName : package::backGround *@ INTRO : the continuously scroll background *@ Aut ...
- 在jboss上部署web应用
1.JBoss介绍 JBoss完全实现了J2EE的服务栈: EJB (Enterprise JavaBeans) JMS (Java Message Service) JTS/JTA (Java Tr ...
- javaee IO流作业02
package Zy; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.Fil ...
- Qt中采用多线程实现Socket编程
Socket通常也称作"套接字",应用程序通常通过"套接字"向网络发出请求或者应答网络请求. 本文介绍的是Qt中采用多线程Socket编程,由于工作的需要,开始 ...
- ADB 命令和monkey
一.概要 1.什么是adb? adb全称为Android Debug Bridge,就是起到调试桥的作用.顾名思义,adb就是一个debug工具. 2.adb工作原理 不是很理解?那就来看看它的工作原 ...