POJ3177 Redundant Paths 图的边双连通分量
题目大意:问一个图至少加多少边能使该图的边双连通分量成为它本身。
图的边双连通分量为极大的不存在割边的子图。图的边双连通分量之间由割边连接。求法如下:
- 求出图的割边
- 在每个边双连通分量内Dfs,标记每个节点所属于的双连通分量编号
- 构建一新图Tree,一个节点代表一个双连通分量。原图中遍历割边,将割边连接的两个双连通分量在Tree中的对应节点连接。
- Tree中算出每个节点的度数,如果一节点度数为1,则其为叶子节点。输出(叶子节点数+1/2)。(连接了叶子节点,就形成了环,Tree中不连接叶子节点的边因为在环内,所以不再是割边了。)
注意:如果一个边是割边,则其反向边也是割边。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cassert>
using namespace std; #define LOOP(i, n) for(int i=1; i<=n; i++)
const int MAX_NODE = 5010, MAX_EDGE = 10010 * 2; struct G {
struct Node;
struct Edge; struct Node {
int Id, DfsN, Low, InBlock, Degree;
Edge *Head;
}_nodes[MAX_NODE], *Root; struct Edge {
bool IsCut;
Node *From, *To;
Edge *Next, *Rev;
Edge(){}
Edge(Node *from, Node *to, Edge *next):From(from),To(to),Next(next),IsCut(false){}
}*_edges[MAX_EDGE]; int _vCount, _eCount, DfsCnt, BlockCnt, LeafCnt; void Init() {
memset(_nodes, 0, sizeof(_nodes));
_vCount = _eCount = DfsCnt = LeafCnt = 0;
BlockCnt = 0;
} Edge *NewEdge() {
_eCount++;
return _edges[_eCount] ? _edges[_eCount] : _edges[_eCount] = new Edge();
} Edge *AddEdge(Node *from, Node *to) {
Edge *e = NewEdge();
*e = Edge(from, to, from->Head);
from->Head = e;
return e;
} void Build(int uId, int vId, bool is2d) {
while (_vCount < uId || _vCount < vId)
_vCount++;
Node *u = uId + _nodes, *v = vId + _nodes;
u->Id = uId;
v->Id = vId;
Edge *e1 = AddEdge(u, v);
if (is2d) {
Edge *e2 = AddEdge(v, u);
e1->Rev = e2;
e2->Rev = e1;
}
} void FindCutEdge(Node *u, Edge *Prev) {//易忘点:prev
if (u->DfsN)
return;
u->DfsN = u->Low = ++DfsCnt;
for (Edge *e = u->Head; e; e = e->Next) {
if (!e->To->DfsN) {
FindCutEdge(e->To, e);
u->Low = min(u->Low, e->To->Low);
if (u->DfsN < e->To->Low)
e->IsCut = e->Rev->IsCut = true;//易忘点:e->Rev->IsCut
}
else if (e->Rev != Prev)
u->Low = min(u->Low, e->To->DfsN);
}
} void FindCutEdge() {
LOOP(i, _vCount) {//易忘点:图不一定连通,所以要循环。
Root = i + _nodes;
FindCutEdge(Root, NULL);
}
} void SetBlock(Node *u) {
u->InBlock = BlockCnt;
for (Edge *e = u->Head; e; e = e->Next)
if (!e->IsCut && !e->To->InBlock)
SetBlock(e->To);
} void SetBlock() {
LOOP(i, _vCount) {
if (!_nodes[i].InBlock) {
BlockCnt++;
SetBlock(i + _nodes);
}
}
}
void SetLeafCnt() {//此处比较有技巧,注意看看
LOOP(i, _eCount)
_edges[i]->To->Degree++;
LOOP(i, _vCount)
if (_nodes[i].Degree <= 1)
LeafCnt++;
}
}Org, Tree; int main() {
#ifdef _DEBUG
freopen("c:\\noi\\source\\input.txt", "r", stdin);
//freopen("c:\\noi\\source\\output.txt", "w", stdout);
#endif
Org.Init();
Tree.Init();
int totNode, totEdge, uId, vId;
scanf("%d%d", &totNode, &totEdge);
LOOP(i, totEdge) {
scanf("%d%d", &uId, &vId);
Org.Build(uId, vId, true);
}
Org.FindCutEdge();
Org.SetBlock();
LOOP(i, Org._eCount)
if (Org._edges[i]->IsCut)
Tree.Build(Org._edges[i]->From->InBlock, Org._edges[i]->To->InBlock, false);
Tree.SetLeafCnt();
printf("%d\n", (Tree.LeafCnt + 1) / 2);
return 0;
}
POJ3177 Redundant Paths 图的边双连通分量的更多相关文章
- POJ 3177 Redundant Paths (tarjan边双连通分量)
题目连接:http://poj.org/problem?id=3177 题目大意是给定一些牧场,牧场和牧场之间可能存在道路相连,要求从一个牧场到另一个牧场要有至少两条以上不同的路径,且路径的每条pat ...
- POJ 3177 Redundant Paths (桥,边双连通分量,有重边)
题意:给一个无向图,问需要补多少条边才可以让整个图变成[边双连通图],即任意两个点对之间的一条路径全垮掉,这两个点对仍可以通过其他路径而互通. 思路:POJ 3352的升级版,听说这个图会给重边.先看 ...
- BZOJ1718:[USACO]Redundant Paths 分离的路径(双连通分量)
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...
- POJ3177 Redundant Paths【tarjan边双联通分量】
LINK 题目大意 给你一个有重边的无向图图,问你最少连接多少条边可以使得整个图双联通 思路 就是个边双的模板 注意判重边的时候只对父亲节点需要考虑 你就dfs的时候记录一下出现了多少条连向父亲的边就 ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
- poj3177 Redundant Paths 边双连通分量
给一个无向图,问至少加入多少条边能够使图变成双连通图(随意两点之间至少有两条不同的路(边不同)). 图中的双连通分量不用管,所以缩点之后建新的无向无环图. 这样,题目问题等效于,把新图中度数为1的点相 ...
- POJ3177 Redundant Paths 双连通分量
Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...
- POJ3177 Redundant Paths(边双连通分量+缩点)
题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...
- POJ3177 Redundant Paths —— 边双联通分量 + 缩点
题目链接:http://poj.org/problem?id=3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total ...
随机推荐
- vs2008bin下Debug bll Release文件 obj下的Debug bll Release文件区别
Bin目录用来存放编译的结果,bin是二进制binrary的英文缩写,因为最初C编译的程序文件都是二进制文件,它有Debug和Release两个版本,分别对应的文件夹为bin/Debug和bin/Re ...
- P1796 汤姆斯的天堂梦_NOI导刊2010提高(05)
题目描述 汤姆斯生活在一个等级为0的星球上.那里的环境极其恶劣,每天12小时的工作和成堆的垃圾让人忍无可忍.他向往着等级为N的星球上天堂般的生活. 有一些航班将人从低等级的星球送上高一级的星球,有时需 ...
- react中withRouter解决props返回为空
利用 react + antd 框架书写导航栏时,遇到了几个坑,分别是一级菜单和二级菜单在点击的情况下,高亮没有任何问题,但是再点击浏览器返回按钮时,却就乱套了. 1. 二级菜单中,我们可以通过 pr ...
- windows下查看端口进程占用情况
引用:http://jingyan.baidu.com/article/3c48dd34491d47e10be358b8.html 我们在启动应用的时候经常发现我们需要使用的端口被别的程序占用,但是我 ...
- Block的本质与使用
1.block的基本概念及使用 blcok是一种特殊的数据结构,它可以保存一段代码,等到需要的时候进行调用执行这段代码,常用于GCD.动画.排序及各类回调. Block变量的声明格式为: 返回值类型( ...
- Verification之PSL之intro
1 PSL - Property specification language 1.1 Property - Characteristics of the designs/verification e ...
- java就业前景发展方向分析
随着信息化的发展,IT培训受倒了越来越多人的追捧.在开发领域,JAVA培训成为了许多人的首选!java拥有强大的开发者的数量已超过了之前的900万,将近97%的企业电脑也在运行着java,其下载量每年 ...
- Percona Xtrabackup备份及恢复
1. http://www.percona.com/software/percona-xtrabackup下载并安装 2. 全量备份 a.全量备份到制定目录 innobacku ...
- 【sqli-labs】 less6 GET - Double Injection - Double Quotes - String (双注入GET双引号字符型注入)
同less5 单引号改成双引号就行 http://localhost/sqli/Less-6/?id=a" union select 1,count(*),concat((select ta ...
- HDU_5690_快速幂,同余的性质
All X Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...