题目

题意:给你你一个数x和一个数q,x<=q,每一次可以等概率把x变成[x,q]中任意一个数,问变成q的步数的期望,输出对998244353取模,多组询问

题解:首先肯定的是,可以预处理,因为只和x,q的差值有关

为了方便理解,我们先定义f[p]表示数p到q的期望,例如对于q=10,f[9]就表示x=9时,期望步数

那么就有    f[1] = 1/q * f[1]+1/q* f[2] +……+ 1/q * f[q-1]  + 1

f[2] = 1/(q-1) * f[2] + ……+1/(q-1) * f[q-1]+1

……

        f[q-1]=1/2 * f[q-1]+1  (例如样例7-8期望步数2)

所以就有

(q-1)/q       * f[1] = 1/q        * (f[2]+f[3]+……+f[q-1]+q)       (q-1)      * f[1] = (f[2]+f[3]+……+f[q-1]+q)

(q-2)/(q-1) * f[2]  = 1/(q-1) *  (f[3]+f[4]+f[q-1]+q-1)             (q-2)    *  f[2]  = (f[3]+f[4]+f[q-1]+q-1)

…… 

1/2* f[q-1] =1/2 * 2

因为多组询问,所以把这个数组倒着处理要方便一点

看了很多人代码,发现具体转移还可以很多种表示,可能是定义f的时候与不同,反正被秀到

 #include<bits/stdc++.h>
#define mod 998244353ll
#define ll long long
#define N 10000010
using namespace std;
int T,l,r;
ll t,f[N],inv[N];
int main()
{
scanf("%d",&T);
inv[]=;
for (int i=;i<N;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for (int i=;i<N;i++)
{
f[i]=(t*inv[i]+(i+)*inv[i])%mod;
t=(t+f[i])%mod;
}
while (T--)
{
scanf("%d%d",&l,&r);
printf("%lld\n",f[r-l]);
}
}

    

Wannafly挑战赛25 C 期望操作数 数学的更多相关文章

  1. Wannafly挑战赛25 B 面积并 数学

    题面 题意:有一个正n边形,它的外接圆的圆心位于原点,半径为l .以原点为圆心,r为半径作一个圆,求圆和这个正n边形的面积并.3<=n<=1e8  1<=l<=1e6 0< ...

  2. Wannafly挑战赛25游记

    Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\ ...

  3. Wannafly挑战赛25 A 因子 数学

    题面 题意:令 X = n!,给定一大于1的正整数p,求一个k使得 p ^k | X 并且 p ^(k + 1) 不是X的因子,n,,p(1e18>=n>=1e4>=p>=2) ...

  4. Wannafly挑战赛25 B.面积并

    链接 [https://www.nowcoder.com/acm/contest/197/B] 分析 特殊优先考虑 首先考虑r>=l这种情况就是圆的面积了 第二就是r<=内切圆的半径,这个 ...

  5. Wannafly挑战赛25 A.因子

    传送门 [https://www.nowcoder.com/acm/contest/197/A] 题意 给你n,m,让你求n!里有多少个m 分析 看这个你就懂了 [https://blog.csdn. ...

  6. Wannafly挑战赛25 因子 [数论]

    一.题意 令 X = n!, 给定一大于1的正整数p 求一个k使得 p ^k | X 并且 p ^(k + 1) 不是X的因子 输入为两个数n, p (1e18>= n>= 10000 & ...

  7. Wannafly挑战赛25C 期望操作数

    Wannafly挑战赛25C 期望操作数 简单题啦 \(f[i]=\frac{\sum_{j<=i}f[j]}{i}+1\) \(f[i]=\frac{f[i]}{i}+\frac{\sum_{ ...

  8. Wannafly挑战赛27

    Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...

  9. Wannafly 挑战赛 19 参考题解

    这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wanna ...

随机推荐

  1. Matlab移植到Eigen用到的词条

    同型矩阵运算满足加法交换律.结合律:并存在单位元.逆元.和0元,为同型矩阵对加法的交换环. Eigen的简单运算参考:http://blog.163.com/jiaqiang_wang/blog/st ...

  2. 计算laws的matlab代码

    很简单的代码:不过花了codeforge上的10个点,自己写也早写出来了; 代码如下: 文件:calLaws.m function [y,h_v,h_h]=calLaws(x,id,LocalEner ...

  3. Android 链接 手机有关问题及解决方案

    我出现的问题: 这是我百度的解决方案:

  4. THREE.js代码备份——webgl - custom attributes [lines](自定义字体显示、控制字图的各个属性)

    <!DOCTYPE html> <html lang="en"> <head> <title>three.js webgl - cu ...

  5. Java子类对于父类中static方法的继承

    今天看到了Java中子类继承父类的一个相关讨论,在网上综合了各家的观点,写下了一篇简短的总结. 问题如下,在父类中含有staic修饰的静态方法,那么子类在继承父类以后可不可以重写父类中的静态方法呢? ...

  6. WebLogic的服务搭建

    一.简介 WebLogic是美国Oracle公司出品的一个application server,确切的说是一个基于JAVAEE架构的中间件,WebLogic是用于开发.集成.部署和管理大型分布式Web ...

  7. Package和Activity

    Package Package 包.只是在我们的app中这个Package是唯一的,就像你身份证号码一样.在我们做app自动化时,我们就需要知道他的Package,我们知道了Package那么也就知道 ...

  8. CSS模块化思想-----命名是个技术活

    CSS模块化思想(一)--------命名是个技术活 引子: 女孩子都喜欢买衣服,而我也不例外,奈何钱包太瘦,买不起高大上的定制,只能买撞衫率极高的休闲衣,不过对于我来说,我还是开心的,毕竟买衣服买的 ...

  9. call,apply,bind

    1.IE5之前不支持call和apply,bind是ES5出来的;2.call和apply可以调用函数,改变this,实现继承和借用别的对象的方法; 1 call和apply定义 调用方法,用一个对象 ...

  10. 继承(day09)

    二十一 继承(Inheritance) ... 子类的构造函数和析构函数 5.1 子类的构造函数 )如果子类构造函数没有显式指明基类子对象的初始化方式,那么该子对象将以无参方式被初始化. )如果希望基 ...