[Codeforces 757E] Bash Plays with Functions (数论)
题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90
题目:
题解:
$f_0(n) = 2^{n的不同质因子的个数}$
$ f_r(n) = \sum_{d|n}f_{r-1}(d)$
$f_0$是积性函数 , $f_r = f_0 * Id^r (1) $也是积性函数 , 所以只需要求$f_r(p^k)$就行了
$f_r(p^k)$与p无关 , $f_0(p^k)$=1+(k!=0) , $f_r(p^k)$=$\sum_{0<=i<=k}$ $ f_{r-1}(p^i)$
先递推出所有 (r,k) 的函数值, 每个询问只要分解质因数即可
时间复杂度: O((r + q) logn)
代码如下:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll; const int N=1e6+;
const int M=;
const int mod=1e9+;
int q,r,n,tot;
int prime[N],vis[N];
ll f[N][];
inline int read()
{
char ch=getchar();
int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
void get_prime()
{
for (int i=;i<=N;i++)
{
if (!vis[i]) prime[++tot]=i;
for (int j=;j<=tot&&prime[j]*i<=N;j++)
{
vis[prime[j]*i]=;
if (i%prime[j]==) break;
}
}
}
void pre()
{
f[][]=;
for (int i=;i<=M;i++) f[][i]=;
for (int i=;i<=N;i++)
{
ll sum=;
for (int j=;j<=M;j++)
{
sum+=f[i-][j];
f[i][j]=(f[i][j]+sum)%mod;
}
}
}
int main()
{
get_prime();
pre();
q=read();
while (q--)
{
r=read();n=read();
ll ans=;
for (int i=;i<=tot&&prime[i]<=sqrt(n);i++)
{
if (n%prime[i]) continue;
int num=;
while (n%prime[i]==) n/=prime[i],num++;
ans=1ll*ans*f[r][num]%mod;
}
if (n>) ans=1ll*ans*f[r][]%mod;
printf("%I64d\n",ans);
}
return ;
}
[Codeforces 757E] Bash Plays with Functions (数论)的更多相关文章
- Codeforces E. Bash Plays with Functions(积性函数DP)
链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...
- CF 757E Bash Plays with Functions——积性函数+dp+质因数分解
题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...
- 【codeforces 757E】Bash Plays with Functions
[题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...
- Bash Plays with Functions CodeForces - 757E (积性函数dp)
大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...
- Codeforces 757 E Bash Plays with Functions
Discription Bash got tired on his journey to become the greatest Pokemon master. So he decides to ta ...
- codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)
http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...
- CF 757 E Bash Plays with Functions —— 积性函数与质因数分解
题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...
- CF757E Bash Plays with Functions
题解 q<=1e6,询问非常多.而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询. 离线也是没有什么意义的,因为必须递推. 先翻译$f_0(n)$ $f_0(n)=\sum_ ...
- Codeforces757E.Bash Plays With Functions(积性函数 DP)
题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...
随机推荐
- linux下开发,解决cocos2d-x中编译出现的一个小问题, undefined reference to symbol 'pthread_create@@GLIBC_2.2.5'
解决cocos2d-x中编译出现的一个小问题 对于cocos2d-x 2.×中编译中,若头文件里引入了#include "cocos-ext.h",在进行C++编译的时候会遇到例如 ...
- poj3249 Test for job 【图的DAG dp】
#include <cstdio> #include <cstdlib> #include <iostream> #include <algorithm> ...
- Spring中@Transactional事务回滚(含实例具体解说,附源代码)
一.使用场景举例 在了解@Transactional怎么用之前我们必须要先知道@Transactional有什么用. 以下举个栗子:比方一个部门里面有非常多成员,这两者分别保存在部门表和成员表里面,在 ...
- Android 自己定义RecyclerView 实现真正的Gallery效果
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/38173061 .本文出自:[张鸿洋的博客] 上一篇博客我使用自己定义Horizo ...
- oracle 下操作blob字段是否会产生大量redo
操作blob字段是否会产生大量redo,答案是不会.以下来做一个实验,測试数据库版本号是11.2.0.1.0: --创建一张表做測试之用 create table test_blob ( id n ...
- mydumper安装及安装故障汇总
mydumper是针对mysql数据库备份的一个轻量级第三方的开源工具,备份方式术语逻辑备份.它支持多线程.备份速度远高于原生态的mysqldump以及众多优异特性. 因此该工具是DBA们的不二选 ...
- Android圆形图片--自己定义控件
Android圆形图片控件效果图例如以下: 代码例如以下: RoundImageView.java package com.dxd.roundimageview; import android.con ...
- SSH Key的生成和使用(for git)
SSH Key的生成和使用 一.总结 1.用git base生成ssh,会生成id_rsa.pub文件,还有一个私钥文件. $ ssh-keygen -t rsa -C “youremailn ...
- 新版Eclipse找不到Java EE Module Dependencies选项
在 Eclipse Galileo (3.5) 版本或Ganymede (3.4) 等更老的版本中, 你可以使用Java EE Module Dependencies 选项来组织你的项目结构,确保依赖 ...
- jquery.gritter 提示
首先引入css和js文件 <link rel="stylesheet" href="<%=basePath%>assets/css/jquery.gri ...