题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90

题目:

题解:

$f_0(n) = 2^{n的不同质因子的个数}$

$ f_r(n) = \sum_{d|n}f_{r-1}(d)$

$f_0$是积性函数 , $f_r = f_0 * Id^r (1) $也是积性函数 , 所以只需要求$f_r(p^k)$就行了

$f_r(p^k)$与p无关 , $f_0(p^k)$=1+(k!=0) , $f_r(p^k)$=$\sum_{0<=i<=k}$ $ f_{r-1}(p^i)$

先递推出所有 (r,k) 的函数值, 每个询问只要分解质因数即可

时间复杂度: O((r + q) logn)

代码如下:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll; const int N=1e6+;
const int M=;
const int mod=1e9+;
int q,r,n,tot;
int prime[N],vis[N];
ll f[N][];
inline int read()
{
char ch=getchar();
int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
void get_prime()
{
for (int i=;i<=N;i++)
{
if (!vis[i]) prime[++tot]=i;
for (int j=;j<=tot&&prime[j]*i<=N;j++)
{
vis[prime[j]*i]=;
if (i%prime[j]==) break;
}
}
}
void pre()
{
f[][]=;
for (int i=;i<=M;i++) f[][i]=;
for (int i=;i<=N;i++)
{
ll sum=;
for (int j=;j<=M;j++)
{
sum+=f[i-][j];
f[i][j]=(f[i][j]+sum)%mod;
}
}
}
int main()
{
get_prime();
pre();
q=read();
while (q--)
{
r=read();n=read();
ll ans=;
for (int i=;i<=tot&&prime[i]<=sqrt(n);i++)
{
if (n%prime[i]) continue;
int num=;
while (n%prime[i]==) n/=prime[i],num++;
ans=1ll*ans*f[r][num]%mod;
}
if (n>) ans=1ll*ans*f[r][]%mod;
printf("%I64d\n",ans);
}
return ;
}

[Codeforces 757E] Bash Plays with Functions (数论)的更多相关文章

  1. Codeforces E. Bash Plays with Functions(积性函数DP)

    链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...

  2. CF 757E Bash Plays with Functions——积性函数+dp+质因数分解

    题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...

  3. 【codeforces 757E】Bash Plays with Functions

    [题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...

  4. Bash Plays with Functions CodeForces - 757E (积性函数dp)

    大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...

  5. Codeforces 757 E Bash Plays with Functions

    Discription Bash got tired on his journey to become the greatest Pokemon master. So he decides to ta ...

  6. codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

    http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...

  7. CF 757 E Bash Plays with Functions —— 积性函数与质因数分解

    题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...

  8. CF757E Bash Plays with Functions

    题解 q<=1e6,询问非常多.而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询. 离线也是没有什么意义的,因为必须递推. 先翻译$f_0(n)$ $f_0(n)=\sum_ ...

  9. Codeforces757E.Bash Plays With Functions(积性函数 DP)

    题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...

随机推荐

  1. fastjson 的简单使用

    public static void main(String[] args) { /*普通对象与json相互转换*/ User u = new User("miquan", &qu ...

  2. Activity管理笔记

    文章仅记录自己学习该模块时的一点理解,看到哪写到哪.所以特别散. AMS管理四大组件外加进程管理,当中最庞大的算是Activity了吧. 1.AMS中对ActivityStack划分为两类.当中一类是 ...

  3. php,二维数组的输出出现了问题,提示:Notice: Array to string conversion

    <?php $arr=array(array("111","222","333"),array("444",&qu ...

  4. bzoj1022: [SHOI2008]小约翰的游戏John(博弈SG-nim游戏)

    1022: [SHOI2008]小约翰的游戏John 题目:传送门 题目大意: 一道反nim游戏,即给出n堆石子,每次可以取完任意一堆或一堆中的若干个(至少取1),最后一个取的LOSE  题解: 一道 ...

  5. elasticsearch index 之 put mapping

    elasticsearch index 之 put mapping   mapping机制使得elasticsearch索引数据变的更加灵活,近乎于no schema.mapping可以在建立索引时设 ...

  6. hexo创建的tags和categories页面为空的解决办法

    title: hexo创建的tags和categories页面为空的解决办法 toc: false date: 2018-04-16 02:26:10 主题:landscape 添加type以及men ...

  7. yum概述配置

    YUM(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的Shell前端软件包管理器.基于RPM包管理,能够从指定的服务器自动下载 ...

  8. (转载)Android UI设计之AlertDialog弹窗控件

    Android UI设计之AlertDialog弹窗控件 作者:qq_27630169 字体:[增加 减小] 类型:转载 时间:2016-08-18我要评论 这篇文章主要为大家详细介绍了Android ...

  9. HDU 1950 Bridging signals【最长上升序列】

    解题思路:题目给出的描述就是一种求最长上升子序列的方法 将该列数an与其按升序排好序后的an'求出最长公共子序列就是最长上升子序列 但是这道题用这种方法是会超时的,用滚动数组优化也超时, 下面是网上找 ...

  10. swift语言点评二

    一.数据类型 1.基础类型的封装 Swift provides its own versions of all fundamental C and Objective-C types, includi ...