Freedom of Choice

Time Limit: 2000ms
Memory Limit: 32768KB

This problem will be judged on Ural. Original ID: 1517
64-bit integer IO format: %lld      Java class name: (Any)

 
 

Background

Before Albanian people could bear with the freedom of speech (this story is fully described in the problem "Freedom of speech"), another freedom - the freedom of choice - came down on them. In the near future, the inhabitants will have to face the first democratic Presidential election in the history of their country.
Outstanding Albanian politicians liberal Mohammed Tahir-ogly and his old rival conservative Ahmed Kasym-bey declared their intention to compete for the high post.

Problem

According to democratic traditions, both candidates entertain with digging dirt upon each other to the cheers of their voters' approval. When occasion offers, each candidate makes an election speech, which is devoted to blaming his opponent for corruption, disrespect for the elders and terrorism affiliation. As a result the speeches of Mohammed and Ahmed have become nearly the same, and now it does not matter for the voters for whom to vote.
The third candidate, a chairman of Albanian socialist party comrade Ktulhu wants to make use of this situation. He has been lazy to write his own election speech, but noticed, that some fragments of the speeches of Mr. Tahir-ogly and Mr. Kasym-bey are completely identical. Then Mr. Ktulhu decided to take the longest identical fragment and use it as his election speech.
 

Input

The first line contains the integer number N (1 ≤ N ≤ 100000). The second line contains the speech of Mr. Tahir-ogly. The third line contains the speech of Mr. Kasym-bey. Each speech consists of N capital latin letters.
 

Output

You should output the speech of Mr. Ktulhu. If the problem has several solutions, you should output any of them.
 

Sample Input

28
VOTEFORTHEGREATALBANIAFORYOU
CHOOSETHEGREATALBANIANFUTURE

Sample Output

THEGREATALBANIA

Source

 
解题:后缀数组的应用,最长公共子串一定是排序后某相邻两个后缀的lcp。
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
int rk[maxn],wb[maxn],wv[maxn],wd[maxn],lcp[maxn];
bool cmp(int *r,int i,int j,int k){
return r[i] == r[j] && r[i+k] == r[j+k];
}
void da(int *r,int *sa,int n,int m){
int i,k,p,*x = rk,*y = wb;
for(i = ; i < m; ++i) wd[i] = ;
for(i = ; i < n; ++i) wd[x[i] = r[i]]++;
for(i = ; i < m; ++i) wd[i] += wd[i-];
for(i = n-; i >= ; --i) sa[--wd[x[i]]] = i; for(p = k = ; p < n; k <<= , m = p){
for(p = ,i = n-k; i < n; ++i) y[p++] = i;
for(i = ; i < n; ++i) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = ; i < n; ++i) wv[i] = x[y[i]];
for(i = ; i < m; ++i) wd[i] = ;
for(i = ; i < n; ++i) wd[wv[i]]++;
for(i = ; i < m; ++i) wd[i] += wd[i-];
for(i = n-; i >= ; --i) sa[--wd[wv[i]]] = y[i]; swap(x,y);
x[sa[]] = ;
for(p = i = ; i < n; ++i)
x[sa[i]] = cmp(y,sa[i-],sa[i],k)?p-:p++;
}
}
void calcp(int *r,int *sa,int n){
for(int i = ; i <= n; ++i) rk[sa[i]] = i;
int h = ;
for(int i = ; i < n; ++i){
if(h > ) h--;
for(int j = sa[rk[i]-]; j+h < n && i+h < n; ++h)
if(r[i+h] != r[j+h]) break;
lcp[rk[i]-] = h;
}
}
char sc[maxn],sb[maxn];
int sa[maxn],r[maxn];
int main() {
int len;
while(~scanf("%d",&len)){
scanf("%s",sc);
scanf("%s",sb);
sc[len] = '\0';
strcpy(sc+len+,sb);
for(int i = ; i < (len<<|); ++i)
r[i] = sc[i];
r[len<<|] = ;
da(r,sa,(len<<)+,);
calcp(r,sa,len<<|);
int ans = ,index = ;
for(int i = ; i < (len<<|); ++i){
if(sa[i] < len != sa[i+] < len){
if(lcp[i] > ans){
ans = lcp[i];
index = sa[i];
}
}
}
for(int i = ; i < ans; ++i)
putchar(sc[index+i]);
putchar('\n');
}
return ;
}

URAL 1517 Freedom of Choice的更多相关文章

  1. URAL 1517 Freedom of Choice(后缀数组,最长公共字串)

    题目 输出最长公共字串 #define maxn 200010 int wa[maxn],wb[maxn],wv[maxn],ws[maxn]; int cmp(int *r,int a,int b, ...

  2. URAL 1517 Freedom of Choice (后缀数组 输出两个串最长公共子串)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/whyorwhnt/article/details/34075603 题意:给出两个串的长度(一样长) ...

  3. Ural 1517. Freedom of Choice 后缀数组

    Ural1517 所谓后缀数组, 实际上准确的说,应该是排序后缀数组. 一个长度为N的字符串,显然有N个后缀,将他们放入一个数组中并按字典序排序就是后缀数组的任务. 这个数组有很好的性质,使得我们运行 ...

  4. URAL1517Freedom of Choice(后缀数组)

    Background Before Albanian people could bear with the freedom of speech (this story is fully describ ...

  5. 后缀数组 & 题目

    后缀数组被称为字符串处理神器,要解决字符串问题,一定要掌握它.(我这里的下标全部都是从1开始) 首先后缀数组要处理出两个数组,一个是sa[],sa[i]表示排名第i为的后缀的起始位置是什么,rank[ ...

  6. [URAL-1517][求两个字符串的最长公共子串]

    Freedom of Choice URAL - 1517 Background Before Albanian people could bear with the freedom of speec ...

  7. 学券制(教育券、school voucher)

    美国「学券制」是怎样的一种制度?它为什么是共和党的执政政策?它在美国及其它地区有实施吗?效果如何?能否在保证公平的同时,通过市场提高教育质量? 作者:冉筱韬链接:https://www.zhihu.c ...

  8. zoj 3088 Easter Holidays(最长路+最短路+打印路径)

    Scandinavians often make vacation during the Easter holidays in the largest ski resort Are. Are prov ...

  9. TMS X-Cloud Todolist with FNC

    Wednesday, June 22, 2016 It's almost three months since we released the first version of the TMS FNC ...

随机推荐

  1. SecureRandom生成随机数超慢 导致tomcat启动时间过长的解决办法

    用腾讯云的CentOS 7.2 CVM 服务器跑Tomcat时发现,Tomcat启动的特别慢,通过查看日志,发现时间主要花在实例化SecureRandom对象上了. 由该日志可以看出,实例化该对象使用 ...

  2. nodejs-函数

    使用表达式定义的函数要提到使用之前,要不然无法解析,自然的function xx(xx)不用,ECMAscript自动提前 with关键字 引入空间命令空间,然后可以直接使用里面的对象了 label标 ...

  3. Java关键字整理之二

    abstrac和interface 一.抽象类:abstract 抽象类就是为了继承而存在的,如果你定义了一个抽象类,却不去继承它,那么等于白白创建了这个抽象类,因为你不能用它来做任何事情.对于一个父 ...

  4. Fibbonacci Number(杭电2070)

    /*Fibbonacci Number Problem Description Your objective for this question is to develop a program whi ...

  5. unity3d教程运行物理机制

    首先,我们将把Hooke定律写Euler方法结合在一起找到新坐标.加速和速度. Hooke定律是F=kx,这里的F是指由水流产生的力(记住,我们将把水体表面模拟为水流),k是指水流的常量.x则是位移. ...

  6. angularjs1-3,工具方法,bootstrap,多个module,引入jquery

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  7. DNS查询报文实例

    2.2 DNS查询报文实例 以www.baidu.com为例,用Wireshark俘获分组,结合2.1的理论内容,很容易看明白的,DNS请求报文如下: 图7 DNS请求报文示例 2.3 DNS回答报文 ...

  8. oracle 11gR2 如何修改vip

    因为业务需要,需要将p570a主机和p570b主机上的vip做修改 修改前ip 192.168.128.12   p570a-vip 192.168.128.13   p570b-vip 修改后ip ...

  9. 【SDOI 2016】 排列计数

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4517 [算法] 有m个数在原来的位置上,说明有(n-m)个数不再原来的位置上 那么, ...

  10. USACO 1.5 Superprime Rib

    Superprime Rib Butchering Farmer John's cows always yields the best prime rib. You can tell prime ri ...