Freedom of Choice

Time Limit: 2000ms
Memory Limit: 32768KB

This problem will be judged on Ural. Original ID: 1517
64-bit integer IO format: %lld      Java class name: (Any)

 
 

Background

Before Albanian people could bear with the freedom of speech (this story is fully described in the problem "Freedom of speech"), another freedom - the freedom of choice - came down on them. In the near future, the inhabitants will have to face the first democratic Presidential election in the history of their country.
Outstanding Albanian politicians liberal Mohammed Tahir-ogly and his old rival conservative Ahmed Kasym-bey declared their intention to compete for the high post.

Problem

According to democratic traditions, both candidates entertain with digging dirt upon each other to the cheers of their voters' approval. When occasion offers, each candidate makes an election speech, which is devoted to blaming his opponent for corruption, disrespect for the elders and terrorism affiliation. As a result the speeches of Mohammed and Ahmed have become nearly the same, and now it does not matter for the voters for whom to vote.
The third candidate, a chairman of Albanian socialist party comrade Ktulhu wants to make use of this situation. He has been lazy to write his own election speech, but noticed, that some fragments of the speeches of Mr. Tahir-ogly and Mr. Kasym-bey are completely identical. Then Mr. Ktulhu decided to take the longest identical fragment and use it as his election speech.
 

Input

The first line contains the integer number N (1 ≤ N ≤ 100000). The second line contains the speech of Mr. Tahir-ogly. The third line contains the speech of Mr. Kasym-bey. Each speech consists of N capital latin letters.
 

Output

You should output the speech of Mr. Ktulhu. If the problem has several solutions, you should output any of them.
 

Sample Input

28
VOTEFORTHEGREATALBANIAFORYOU
CHOOSETHEGREATALBANIANFUTURE

Sample Output

THEGREATALBANIA

Source

 
解题:后缀数组的应用,最长公共子串一定是排序后某相邻两个后缀的lcp。
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
int rk[maxn],wb[maxn],wv[maxn],wd[maxn],lcp[maxn];
bool cmp(int *r,int i,int j,int k){
return r[i] == r[j] && r[i+k] == r[j+k];
}
void da(int *r,int *sa,int n,int m){
int i,k,p,*x = rk,*y = wb;
for(i = ; i < m; ++i) wd[i] = ;
for(i = ; i < n; ++i) wd[x[i] = r[i]]++;
for(i = ; i < m; ++i) wd[i] += wd[i-];
for(i = n-; i >= ; --i) sa[--wd[x[i]]] = i; for(p = k = ; p < n; k <<= , m = p){
for(p = ,i = n-k; i < n; ++i) y[p++] = i;
for(i = ; i < n; ++i) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = ; i < n; ++i) wv[i] = x[y[i]];
for(i = ; i < m; ++i) wd[i] = ;
for(i = ; i < n; ++i) wd[wv[i]]++;
for(i = ; i < m; ++i) wd[i] += wd[i-];
for(i = n-; i >= ; --i) sa[--wd[wv[i]]] = y[i]; swap(x,y);
x[sa[]] = ;
for(p = i = ; i < n; ++i)
x[sa[i]] = cmp(y,sa[i-],sa[i],k)?p-:p++;
}
}
void calcp(int *r,int *sa,int n){
for(int i = ; i <= n; ++i) rk[sa[i]] = i;
int h = ;
for(int i = ; i < n; ++i){
if(h > ) h--;
for(int j = sa[rk[i]-]; j+h < n && i+h < n; ++h)
if(r[i+h] != r[j+h]) break;
lcp[rk[i]-] = h;
}
}
char sc[maxn],sb[maxn];
int sa[maxn],r[maxn];
int main() {
int len;
while(~scanf("%d",&len)){
scanf("%s",sc);
scanf("%s",sb);
sc[len] = '\0';
strcpy(sc+len+,sb);
for(int i = ; i < (len<<|); ++i)
r[i] = sc[i];
r[len<<|] = ;
da(r,sa,(len<<)+,);
calcp(r,sa,len<<|);
int ans = ,index = ;
for(int i = ; i < (len<<|); ++i){
if(sa[i] < len != sa[i+] < len){
if(lcp[i] > ans){
ans = lcp[i];
index = sa[i];
}
}
}
for(int i = ; i < ans; ++i)
putchar(sc[index+i]);
putchar('\n');
}
return ;
}

URAL 1517 Freedom of Choice的更多相关文章

  1. URAL 1517 Freedom of Choice(后缀数组,最长公共字串)

    题目 输出最长公共字串 #define maxn 200010 int wa[maxn],wb[maxn],wv[maxn],ws[maxn]; int cmp(int *r,int a,int b, ...

  2. URAL 1517 Freedom of Choice (后缀数组 输出两个串最长公共子串)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/whyorwhnt/article/details/34075603 题意:给出两个串的长度(一样长) ...

  3. Ural 1517. Freedom of Choice 后缀数组

    Ural1517 所谓后缀数组, 实际上准确的说,应该是排序后缀数组. 一个长度为N的字符串,显然有N个后缀,将他们放入一个数组中并按字典序排序就是后缀数组的任务. 这个数组有很好的性质,使得我们运行 ...

  4. URAL1517Freedom of Choice(后缀数组)

    Background Before Albanian people could bear with the freedom of speech (this story is fully describ ...

  5. 后缀数组 & 题目

    后缀数组被称为字符串处理神器,要解决字符串问题,一定要掌握它.(我这里的下标全部都是从1开始) 首先后缀数组要处理出两个数组,一个是sa[],sa[i]表示排名第i为的后缀的起始位置是什么,rank[ ...

  6. [URAL-1517][求两个字符串的最长公共子串]

    Freedom of Choice URAL - 1517 Background Before Albanian people could bear with the freedom of speec ...

  7. 学券制(教育券、school voucher)

    美国「学券制」是怎样的一种制度?它为什么是共和党的执政政策?它在美国及其它地区有实施吗?效果如何?能否在保证公平的同时,通过市场提高教育质量? 作者:冉筱韬链接:https://www.zhihu.c ...

  8. zoj 3088 Easter Holidays(最长路+最短路+打印路径)

    Scandinavians often make vacation during the Easter holidays in the largest ski resort Are. Are prov ...

  9. TMS X-Cloud Todolist with FNC

    Wednesday, June 22, 2016 It's almost three months since we released the first version of the TMS FNC ...

随机推荐

  1. Makefile错误总结

    自己在做嵌入式驱动时,编写makefile文件是犯的错及解决办法 问题1:makefile 3 missing separator.stop: 问题2:Nothing to be done for ' ...

  2. 全球级的分布式数据库 Google Spanner原理

    开发四年只会写业务代码,分布式高并发都不会还做程序员?->>>    Google Spanner简介 Spanner 是Google的全球级的分布式数据库 (Globally-Di ...

  3. linux c获取mac

    #include <stdio.h> #include <string.h> #include <net/if.h> #include <sys/ioctl. ...

  4. Tom和Jerry来了,Tom和Jerry走了——北漂18年(38)

    上次讲到跟我同一时候入职的女销售走了. 回忆起来,她的问题多半是技巧足够,脑子不足够,走了之后再没联系.不久之后,在老板的要求之下.LilyG又招聘了两位男销售,英文名字非常登对一个叫Tom,一个叫J ...

  5. 从WAVE头文件里获取压缩方式

    在解析WAV文件时.会从头文件里读取TAG值,表示当前文件的压缩格式,如该值为1,表示没有压缩,其他表示不同的压缩方式. 如当中为6时,表示压缩方式是alaw 列表例如以下: TAG值 音频描写叙述 ...

  6. Spark SQL Catalyst源代码分析之Analyzer

    /** Spark SQL源代码分析系列文章*/ 前面几篇文章解说了Spark SQL的核心运行流程和Spark SQL的Catalyst框架的Sql Parser是如何接受用户输入sql,经过解析生 ...

  7. 杂项:WCF

    ylbtech-杂项:WCF Windows Communication Foundation(WCF)是由微软开发的一系列支持数据通信的应用程序框架,可以翻译为Windows 通讯开发平台. 整合了 ...

  8. Sort和UnSort的小技巧

    Sort和UnSort的小技巧: 记录sortidx,对sortidx再从小到大排序就可以得到用于还原的unsortidx. 对于序列A: sort_idx = np.argsort(A) un_so ...

  9. POJ 1995 Raising Modulo Numbers 【快速幂取模】

    题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> lon ...

  10. Mac-O文件加载的全过程(一)

    在Mac的开发中, 有没有想过当我们点击可执行文件之后,Mac究竟做了什么事情才让我们的程序运行起来? 对于应用层开发人员或者普通的用户而言, 其实无需知道的这么详细:但是对于内核开发人员而言, 如果 ...