Tour

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 2925    Accepted Submission(s): 1407

Problem Description
In
the kingdom of Henryy, there are N (2 <= N <= 200) cities, with M
(M <= 30000) one-way roads connecting them. You are lucky enough to
have a chance to have a tour in the kingdom. The route should be
designed as: The route should contain one or more loops. (A loop is a
route like: A->B->……->P->A.)
Every city should be just in one route.
A
loop should have at least two cities. In one route, each city should be
visited just once. (The only exception is that the first and the last
city should be the same and this city is visited twice.)
The total distance the N roads you have chosen should be minimized.
 
Input
An integer T in the first line indicates the number of the test cases.
In
each test case, the first line contains two integers N and M,
indicating the number of the cities and the one-way roads. Then M lines
followed, each line has three integers U, V and W (0 < W <=
10000), indicating that there is a road from U to V, with the distance
of W.
It is guaranteed that at least one valid arrangement of the tour is existed.
A blank line is followed after each test case.
 
Output
For each test case, output a line with exactly one integer, which is the minimum total distance.
 
Sample Input
1
6 9
1 2 5
2 3 5
3 1 10
3 4 12
4 1 8
4 6 11
5 4 7
5 6 9
6 5 4
 
Sample Output
42
 
题意:和hdu 1853题意和解法几乎一样,但是这题我看英文硬是没看懂。。。题意就是n个城市,每个城市都必须在一个环里面并且也只能出现在一个环里面?问最小的花费是多少?
题解:解法一:最小费用最大流:要去重 不然TLE。每个点只能出现一次,那么一个点容量限制为1,然后拆点跑最小费用最大流即可.
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = ;
const int N = ;
const int M = ;
struct Edge{
int u,v,cap,cost,next;
}edge[M];
int head[N],tot,low[N],pre[N];
int total ;
bool vis[N];
int flag[N][N];
void addEdge(int u,int v,int cap,int cost,int &k){
edge[k].u=u,edge[k].v=v,edge[k].cap = cap,edge[k].cost = cost,edge[k].next = head[u],head[u] = k++;
edge[k].u=v,edge[k].v=u,edge[k].cap = ,edge[k].cost = -cost,edge[k].next = head[v],head[v] = k++;
}
void init(){
memset(head,-,sizeof(head));
tot = ;
}
bool spfa(int s,int t,int n){
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++){
low[i] = (i==s)?:INF;
pre[i] = -;
}
queue<int> q;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int k=head[u];k!=-;k=edge[k].next){
int v = edge[k].v;
if(edge[k].cap>&&low[v]>low[u]+edge[k].cost){
low[v] = low[u] + edge[k].cost;
pre[v] = k; ///v为终点对应的边
if(!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
return true;
}
int MCMF(int s,int t,int n){
int mincost = ,minflow,flow=;
while(spfa(s,t,n))
{
minflow=INF+;
for(int i=pre[t];i!=-;i=pre[edge[i].u])
minflow=min(minflow,edge[i].cap);
flow+=minflow;
for(int i=pre[t];i!=-;i=pre[edge[i].u])
{
edge[i].cap-=minflow;
edge[i^].cap+=minflow;
}
mincost+=low[t]*minflow;
}
total=flow;
return mincost;
}
int n,m;
int main(){
int tcase;
scanf("%d",&tcase);
while(tcase--){
init();
scanf("%d%d",&n,&m);
int src = ,des = *n+;
for(int i=;i<=n;i++){
addEdge(src,i,,,tot);
addEdge(i+n,des,,,tot);
}
memset(flag,-,sizeof(flag));
for(int i=;i<=m;i++){ ///去重
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(flag[u][v]==-||w<flag[u][v]){
flag[u][v] = w;
}
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(flag[i][j]!=-){
addEdge(i,j+n,,flag[i][j],tot);
}
}
}
int mincost = MCMF(src,des,*n+);
if(total!=n) printf("-1\n");
else printf("%d\n",mincost);
}
}

题解二:KM算法,也是将一个点看成两个点,算最优匹配即可.

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = ;
const int N = ;
int graph[N][N];
int lx[N],ly[N];
int linker[N];
bool x[N],y[N];
int n,m;
void init(){
memset(lx,,sizeof(lx));
memset(ly,,sizeof(ly));
memset(linker,-,sizeof(linker));
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(lx[i]<graph[i][j]) lx[i] = graph[i][j];
}
}
}
bool dfs(int u){
x[u] = true;
for(int i=;i<=n;i++){
if(!y[i]&&graph[u][i]==lx[u]+ly[i]){
y[i] = true;
if(linker[i]==-||dfs(linker[i])){
linker[i] = u;
return true;
}
}
}
return false;
}
int KM(){
int sum = ;
init();
for(int i=;i<=n;i++){
while(){
memset(x,false,sizeof(x));
memset(y,false,sizeof(y));
if(dfs(i)) break;
int d = INF;
for(int j=;j<=n;j++){
if(x[j]){
for(int k=;k<=n;k++){
if(!y[k]) d = min(d,lx[j]+ly[k]-graph[j][k]);
}
}
}
if(d==INF) break;
for(int j=;j<=n;j++){
if(x[j]) lx[j]-=d;
if(y[j]) ly[j]+=d;
}
}
}
for(int i=;i<=n;i++){
sum+=graph[linker[i]][i];
}
return sum;
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
graph[i][j] = -INF;
}
}
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
graph[u][v] = max(graph[u][v],-w);
}
int ans = KM();
printf("%d\n",-ans);
}
return ;
}

不去重之后还可以很快跑过去的某大牛的模板.

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<set>
#include<vector>
#include<map>
#include<queue>
#include<climits>
#include<assert.h>
#include<functional>
using namespace std;
const int maxn=;
const int INF=;
typedef pair<int,int> P; struct edge
{
int to,cap,cost,rev;
edge(int t,int c,int co,int r)
:to(t),cap(c),cost(co),rev(r){}
edge(){}
}; int V;//the number of points
vector<edge>G[maxn];
int h[maxn];
int dist[maxn];
int prevv[maxn],preve[maxn];
void add_edge(int from,int to,int cap,int cost)
{
G[from].push_back(edge(to,cap,cost,G[to].size()));
G[to].push_back(edge(from,,-cost,G[from].size()-));
} void clear()
{
for(int i=;i<V;i++) G[i].clear();
} int min_cost_flow(int s,int t,int f)
{
int res=,k=f;
fill(h,h+V,);//如果下标从1开始,就要+1
while(f>)
{
priority_queue<P,vector<P>,greater<P> >que;
fill(dist,dist+V,INF);
dist[s]=;
que.push(P(,s));
while(!que.empty())
{
P cur=que.top();que.pop();
int v=cur.second;
if(dist[v]<cur.first) continue;
for(int i=;i<G[v].size();i++)
{
edge &e=G[v][i];
if(e.cap>&&dist[e.to]>dist[v]+e.cost+h[v]-h[e.to])
{
dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];
prevv[e.to]=v;
preve[e.to]=i;
que.push(P(dist[e.to],e.to));
}
}
}
if(dist[t]==INF)
{
return -;
}
for(int v=;v<V;v++) h[v]+=dist[v];//从0还是1开始需要结合题目下标从什么开始 int d=f;
for(int v=t;v!=s;v=prevv[v])
{
d=min(d,G[prevv[v]][preve[v]].cap);
}
f-=d;
res+=d*h[t];
for(int v=t;v!=s;v=prevv[v])
{
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
}
return res;
} int n,m;
int main(){
int tcase;
scanf("%d",&tcase);
while(tcase--){
scanf("%d%d",&n,&m);
clear();
V=*n+;
int src = ,des = *n+;
for(int i=;i<=n;i++){
add_edge(src,i,,);
add_edge(i+n,des,,);
}
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add_edge(u,n+v,,w);
}
int mincost = min_cost_flow(src,des,n);
printf("%d\n",mincost);
}
}

hdu 3488(KM算法||最小费用最大流)的更多相关文章

  1. hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

    Special Fish Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  2. 图论算法-最小费用最大流模板【EK;Dinic】

    图论算法-最小费用最大流模板[EK;Dinic] EK模板 const int inf=1000000000; int n,m,s,t; struct node{int v,w,c;}; vector ...

  3. hdu 1533 Going Home 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...

  4. HDU 5988.Coding Contest 最小费用最大流

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  5. hdu 3667(拆边+最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...

  6. HDU–5988-Coding Contest(最小费用最大流变形)

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  7. POJ 2195 & HDU 1533 Going Home(最小费用最大流)

    这就是一道最小费用最大流问题 最大流就体现到每一个'm'都能找到一个'H',但是要在这个基础上面加一个费用,按照题意费用就是(横坐标之差的绝对值加上纵坐标之差的绝对值) 然后最小费用最大流模板就是再用 ...

  8. hdu 1533 Going Home 最小费用最大流 入门题

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  9. hdoj 3488 Tour 【最小费用最大流】【KM算法】

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submi ...

随机推荐

  1. caffe中使用crop_size剪裁训练图片

    layer { name: "data" type: "Data" top: "data" top: "label" i ...

  2. MyBatis插件及示例----打印每条SQL语句及其执行时间

    Plugins 摘一段来自MyBatis官方文档的文字. MyBatis允许你在某一点拦截已映射语句执行的调用.默认情况下,MyBatis允许使用插件来拦截方法调用 Executor(update.q ...

  3. UVA 1640 The Counting Problem

    https://vjudge.net/problem/UVA-1640 题意:统计区间[l,r]中0——9的出现次数 数位DP 注意删除前导0 #include<cmath> #inclu ...

  4. spoj COT2 - Count on a tree II

    COT2 - Count on a tree II http://www.spoj.com/problems/COT2/ #tree You are given a tree with N nodes ...

  5. ASP.NET和ASP的区别是什么

    分析: ASP与ASP.NET是Microsoft公司在Web应用程序开发上的两项重要技术. ASP与ASP.NET区别如下: (1)开发语言不同:ASP的开发语言仅局限于使用non-type脚本语言 ...

  6. 什么叫TLD、gTLD、nTLD、ccTLD、iTLD 以及几者之间的关系

    TLD TLD的全称是Top Level Domain,顶级域名,它是一个因特网域名的最后部分,也就是任何域名的最后一个点后面的字母组成的部分. 最早的顶级域名有:.com(公司和企业)..net(网 ...

  7. LightOJ 1340 - Story of Tomisu Ghost 阶乘分解素因子

    http://www.lightoj.com/volume_showproblem.php?problem=1340 题意:问n!在b进制下至少有t个后缀零,求最大的b. 思路:很容易想到一个数通过分 ...

  8. codevs1066&&noip引水入城

    这道题 解决第一问 用灌水法 枚举第一行的每一个点 查找是否最后一行的每一个点是否都能灌到水 第二问 用反灌水发 枚举最后一行的每一个点 解决第一行每一个点所能覆盖的左右端点 可以证明每个点所能覆盖的 ...

  9. 通过JDBC连接HiveServer2

    如果通过JDBC连接HiveServer2时提示:User: hive is not allowed to impersonate hive,需要在core-site.xml中新增如下配置: hado ...

  10. linux命令面试题

    文件管理命令 (1)Linux的文件系统目录配置要遵循FHS规范,规范定义的两级目录规范如下:        /home  每个账号在该目录下都有一个文件夹,进行数据的管理        /usr 有 ...