uva10392 Factoring Large Numbers
uva10392 Factoring Large Numbers
本文涉及的知识点是,使用线性筛选法得到素数表。
1 题目
Problem F: Factoring Large Numbers
One of the central ideas behind much cryptography is that factoring large numbers is computationally intensive. In this context one might use a 100 digit number that was a product of two 50 digit prime numbers. Even with the fastest projected computers this factorization will take hundreds of years.
You don't have those computers available, but if you are clever you can still factor fairly large numbers.
Input
The input will be a sequence of integer values, one per line, terminated by a negative number. The numbers will fit in gcc's long long int datatype. You may assume that there will be at most one factor more than 1000000.
Output
Each positive number from the input must be factored and all factors (other than 1) printed out. The factors must be printed in ascending order with 4 leading spaces preceding a left justified number, and followed by a single blank line.
Sample Input
90
1234567891
18991325453139
12745267386521023
-1
Sample Output
2
3
3
5 1234567891 3
3
13
179
271
1381
2423 30971
411522630413
2 思路
这是一个分解质因数问题,因为题目说明了数字不超过long long int表示的数,所以 这不是一个大数问题。基本的思路是首先得到素数表,再用输入的大数对素数表中的 素数依次作除法运算。
关键的地方有两个,一个是素数表的获得。这里使用了线性筛选法,把所有的合数筛去, 关键的思想在于每个合数都是被它的最小素因子筛去的,且只会被筛一次。
关键代码在于:
if (!i%prime[k]) break;
之所以可以break在于,i可以整除prime[k], 在于下一次循环要筛的数字i*prime[k+1]一定已经被prime[k]筛过了,因为素数表是按大小排列的,prime[k]比prime[k+1]小,而每个合数都是被它最小的素因子筛出去的。
第二个点在于题目中已经说明,最多有一个素因子大于1000000,所以素数表只开到1000000就可以了, 如果遍历完素数表输入的数字还没有变成1,那么,将其最终结果输出就可以了,这个结果 就是那个大于1000000的因子,否则它一定可以被1000000内的素数整除。
3 代码
#include <stdio.h>
#include <string.h> #define N 1000000
long long prime[N];
short is_prime[N]; long long get_prime (long long prime[], long long n) {
long long i, j, k;
memset (is_prime, 0, sizeof(is_prime[0])*n); j = 0;
for (i=2; i<n; i++) {
if (!is_prime[i]) prime[j++] = i;
for (k=0; k<j && i*prime[k]<n; k++) {
is_prime[ i*prime[k] ] = 1;
if (!i%prime[k]) break;
}
} return j;
} int main() {
long long n;
long long i;
long long prime_num; prime_num = get_prime (prime, N); while (scanf ("%lld", &n) != EOF) {
if (n == -1) break; for (i=0; i<prime_num && n!=1; i++) {
while (n % prime[i] == 0) {
printf (" %lld\n", prime[i]);
n /= prime[i];
}
}
if (n != 1) printf (" %lld\n", n);
printf ("\n");
} return 0;
}
4 参考
uva10392 Factoring Large Numbers的更多相关文章
- [Typescript] Improve Readability with TypeScript Numeric Separators when working with Large Numbers
When looking at large numbers in code (such as 1800000) it’s oftentimes difficult for the human eye ...
- 【概率论】6-2:大数定理(The Law of Large Numbers)
title: [概率论]6-2:大数定理(The Law of Large Numbers) categories: - Mathematic - Probability keywords: - Ma ...
- Law of large numbers and Central limit theorem
大数定律 Law of large numbers (LLN) 虽然名字是 Law,但其实是严格证明过的 Theorem weak law of large number (Khinchin's la ...
- 中心极限定理 | central limit theorem | 大数定律 | law of large numbers
每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?
- Markov and Chebyshev Inequalities and the Weak Law of Large Numbers
https://www.math.wustl.edu/~russw/f10.math493/chebyshev.pdf http://www.tkiryl.com/Probability/Chapte ...
- 大数定律(Law of Large Numbers)
大数定律:每次从总体中随机抽取1个样本,这样抽取很多次后,样本的均值会趋近于总体的期望.也可以理解为:从总体中抽取容量为n的样本,样本容量n越大,样本的均值越趋近于总体的期望.当样本容量极大时,样本均 ...
- UVA题目分类
题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...
- HOJ题目分类
各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...
- UVA 10392 (13.07.28)
Problem F: Factoring Large Numbers One of the central ideas behind much cryptography is that factori ...
随机推荐
- Qualcomm platform, the commonly used parameters of charger and battery in device tree file
Platform MSM8917 PM8937 PMI8940 Parameters 1 battery charging voltage : qcom,float-voltage-mv = < ...
- 刷新SqlServer数据库中所有的视图
ALTER PROCEDURE sp_refallview AS --刷新所有视图 DECLARE @ViewName VARCHAR(MAX); DECLARE @i INT; ; DECLARE ...
- JDBC数据源连接池(3)---Tomcat集成DBCP
此文续<JDBC数据源连接池(2)---C3P0>. Apache Tomcat作为一款JavaWeb服务器,内置了DBCP数据源连接池.在使用中,只要进行相应配置即可. 首先,确保Web ...
- java中的数组与集合相互转换
1.数组转换成集合 数组转换为集合,用Arrays.asList方法. public static void main(String[] args) { String[] arr = {"a ...
- ueditor在QQ浏览器或者IE浏览器中无法加载
因为IE浏览器有兼容问题,打开网址,浏览器不一定以最新的文档模式加载.按F12查看 在你网址的head标签中加入:<meta http-equiv="x-ua-compatible&q ...
- 微信小程序实战篇-图片的预览、二维码的识别
开篇 今天,做的小程序项目要求,个人中心的客服图片在用户长按时可以识别其二维码,各种翻阅查找,采坑很多,浪费了很多时间,在这里记录下需要注意的点,以及对小程序官方提供的API做一个正确和清晰的认知,希 ...
- Maximum Gap——桶排序
Given an unsorted array, find the maximum difference between the successive elements in its sorted f ...
- spring-web涉及jar包说明
<!-- spring-context, spring-aop, spring-beans, spring-core, spring-expression --> <dependen ...
- AC日记——「HNOI2017」单旋 LiBreOJ 2018
#2018. 「HNOI2017」单旋 思路: set+线段树: 代码: #include <bits/stdc++.h> using namespace std; #define max ...
- AC日记——[Sdoi2010]粟粟的书架 bzoj 1926
1926 思路: 主席树+二分水题: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 500005 #defi ...