机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化L2正则化,或者L1范数L2范数。L2范数也被称为权重衰减(weight decay)。

一般回归分析中回归ww表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。L1正则化和L2正则化的说明如下:

  • L1正则化是指权值向量ww中各个元素的绝对值之和,通常表示为||w||1||w||1
  • L2正则化是指权值向量ww中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2

关于二者如何解决机器学习中过拟合问题,可以参考如下链接:

https://blog.csdn.net/weiyongle1996/article/details/78161512

https://blog.csdn.net/jinping_shi/article/details/52433975

tensorflow中提供了两个函数,用于求某个权重w矩阵的L1和L2正则化,下面是代码示例:

'''
输入:
x = [[1.0,2.0]]
w = [[1.0,2.0],[3,0,4.0]] 输出:
y = x*w = [[7.0,10.0]]
l1 = (1.0+2.0+3.0+4.0)*0.5 = 5.0
l2 = (1.0**2 + 2.0**2 + 3.0**2 + 4.0**2) / 2)*0.5 = 7.5
''' import tensorflow as tf
from tensorflow.contrib.layers import * w = tf.constant([[1.0,2.0],[3.0,4.0]])
x = tf.placeholder(dtype=tf.float32,shape=[None,2])
y = tf.matmul(x,w) with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(y,feed_dict={x:[[1.0,2.0]]}))
print("=========================")
print(sess.run(l1_regularizer(scale=0.5)(w)))
#(1.0+2.0+3.0+4.0)*0.5 = 5.0
print("=========================")
print(sess.run(l2_regularizer(scale=0.5)(w)))
#(1.0**2 + 2.0**2 + 3.0**2 + 4.0**2) / 2)*0.5 = 7.5

day-17 L1和L2正则化的tensorflow示例的更多相关文章

  1. tensorflow 中的L1和L2正则化

    import tensorflow as tf weights = tf.constant([[1.0, -2.0],[-3.0 , 4.0]]) >>> sess.run(tf.c ...

  2. 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化

    1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...

  3. 深入理解L1、L2正则化

    过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是 ...

  4. L1 与 L2 正则化

    参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog. ...

  5. Spark2.0机器学习系列之12: 线性回归及L1、L2正则化区别与稀疏解

    概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x).       Spark中实现了:       (1)普通最小二乘法       (2)岭回归(L2正规化)       (3)La ...

  6. 机器学习中的L1、L2正则化

    目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L ...

  7. L1与L2正则化的对比及多角度阐述为什么正则化可以解决过拟合问题

    正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...

  8. L1与L2正则化

    目录 过拟合 结构风险最小化原理 正则化 L2正则化 L1正则化 L1与L2正则化 参考链接 过拟合 机器学习中,如果参数过多.模型过于复杂,容易造成过拟合. 结构风险最小化原理 在经验风险最小化(训 ...

  9. L1、L2正则化详解

    正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...

随机推荐

  1. C#中小写人民币转大写

    /// <summary> /// 转换成大写人民币 /// </summary> /// <param name="myMoney">< ...

  2. 学习笔记(2)centos7 下安装mysql

    centos7安装mysql 本文通过yum方式安装mysql 1.添加mysql yum 仓库 去mysql开发者中心(http://dev.mysql.com/downloads/repo/yum ...

  3. 【模板】缩点(tarjan,DAG上DP)

    题目背景 缩点+DP 题目描述 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只 ...

  4. 05.odoo12开源框架学习

    博客为日常工作学习积累总结: 1.odoo12学习 参考博客:https://alanhou.org/centos-odoo-12/ CentOS 7快速安装配置 Odoo 12 添加新用户必做,不然 ...

  5. ES6 开发规范-最佳实践

    ES6 开发规范(最佳实践) 本文为开发规范,收集方便日后查看. [开发规范]https://blog.csdn.net/zzzkk2009/article/details/53171058?utm_ ...

  6. Python学习 :json、pickle&shelve 模块

    数据交换格式 json 模块 json (JavaScript Object Notation)是一种轻量级的数据交换语言,以文字为基础,且易于让人阅读.尽管 json 是JavaScript的一个子 ...

  7. #include stdio.h(A)

    /* 第一个*******知识点工程相关信息******** 1.创建工程 文件->新建->工程->win32 console applecation ->文件名不能为汉字 2 ...

  8. ggplot2画简单的heatmap

    gg_heatmap gg_heatmap PeRl ggplot2 heatmap 偶然的机会,发现ggplot2画的heatmap也挺好看的,除了不能画出聚类树来(手动滑稽). 随意新建了两个矩阵 ...

  9. program files与program files(x86)的区别

    简单来说:Program Files (x86)存放了一些32位的系统文件.它和正常的Program Files以及Windows文件夹一样,都属于系统文件夹,请勿随意改动. 64位Windows中提 ...

  10. kafka配置参数详解

    Broker  Configs Property Default Description broker.id   每个broker都可以用一个唯一的非负整数id进行标识:这个id可以作为broker的 ...