题目链接

LOJ.

BZOJ.

Solution

先建圆方树。

我们考虑暴力,枚举一个点对,我们枚举的点都是圆点,然后统计中间那个点可以取的位置的数量,加起来就是答案。

那么怎么统计呢,我们对于每个点赋一个点权,方点点权为点双的大小,圆点点权为\(-1\)。

那么这条路径的点权和就是答案,注意要统计到端点的权值。

然后优化就很显然了,直接枚举每个点被算了多少次就行了,这个随便算一下就好了。

复杂度\(O(n)\)。

#include<bits/stdc++.h>
using namespace std; #define int long long void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define lf double
#define ll long long const int maxn = 4e5+10;
const int inf = 1e9;
const lf eps = 1e-8; int cnt,n,m,val[maxn],ans,rt; struct Tree {
int head[maxn],tot,vis[maxn],sz[maxn];
struct edge{int to,nxt;}e[maxn<<1]; void add(int u,int v) {e[++tot]=(edge){v,head[u]},head[u]=tot;}
void ins(int u,int v) {add(u,v),add(v,u);} void dfs(int x,int fa) {
vis[x]=1,sz[x]=x<=n;
for(int i=head[x];i;i=e[i].nxt) if(e[i].to!=fa) dfs(e[i].to,x),sz[x]+=sz[e[i].to];
} void solve(int x,int fa) {
int res=0,s=0;
for(int i=head[x];i;i=e[i].nxt)
if(e[i].to!=fa) res+=s*sz[e[i].to],s+=sz[e[i].to];
res+=s*(sz[rt]-sz[x]);res<<=1;ans+=res*val[x];
for(int i=head[x];i;i=e[i].nxt) if(e[i].to!=fa) solve(e[i].to,x);
}
}T; struct Graph {
int head[maxn],tot,dfn[maxn],low[maxn],dfn_cnt,sta[maxn],top;
struct edge{int to,nxt;}e[maxn<<1]; void add(int u,int v) {e[++tot]=(edge){v,head[u]},head[u]=tot;}
void ins(int u,int v) {add(u,v),add(v,u);} void tarjan(int x,int fa) {
dfn[x]=low[x]=++dfn_cnt,sta[++top]=x;
for(int v,i=head[x];i;i=e[i].nxt) {
if((v=e[i].to)==fa) continue;
if(!dfn[v]) tarjan(v,x),low[x]=min(low[x],low[v]);
else {low[x]=min(low[x],dfn[v]);continue;}
if(low[v]>=dfn[x]) {
++cnt;T.ins(cnt,x);val[cnt]++;
while(top) {
int now=sta[top--];T.ins(now,cnt),val[cnt]++;
if(now==v) break;
}
}
}
}
}G; signed main() {
read(n),read(m);for(int i=1,x,y;i<=m;i++) read(x),read(y),G.ins(x,y);
cnt=n;for(int i=1;i<=n;i++) if(!G.dfn[i]) G.tarjan(i,0);
for(int i=1;i<=n;i++) val[i]=-1;
for(int i=1;i<=n;i++) if(!T.vis[i]) rt=i,T.dfs(i,0),T.solve(i,0),ans-=T.sz[i]*(T.sz[i]-1)*2;
write(ans);
return 0;
}

[BZOJ5463] [APIO2018] 铁人两项的更多相关文章

  1. 2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)

    传送门 题意简述:给你一张无向图,问你满足存在从a−>b−>ca->b->ca−>b−>c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)(a,b,c) ...

  2. [BZOJ5463][APIO2018]铁人两项:Tarjan+圆方树

    分析 根据题目中的要求,从\(s\)出发前往\(f\)一定可以,并且只可能经过这两个结点所在的点双连通分量和它们之间的点双连通分量,因此切换点\(c\)只能从这些点中选取. 建出圆方树后,因为圆方树上 ...

  3. [BZOJ5463][APIO2018]铁人两项(圆方树DP)

    题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...

  4. [APIO2018]铁人两项 --- 圆方树

     [APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...

  5. [APIO2018]铁人两项——圆方树+树形DP

    题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...

  6. [APIO2018]铁人两项 [圆方树模板]

    把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...

  7. [APIO2018]铁人两项(圆方树)

    过了14个月再重新看这题,发现圆方树从来就没有写过.然后写了这题发现自己APIO2018打铁的原因竟然是没开long long,将树的部分的O(n)写挂了(爆int),毕竟去年APIO时我啥都不会,连 ...

  8. LOJ.2587.[APIO2018]铁人两项Duathlon(圆方树)

    题目链接 LOJ 洛谷P4630 先对这张图建圆方树. 对于S->T这条(些)路径,其对答案的贡献为可能经过的所有点数,那么我们把方点权值设为联通分量的大小,可以直接去求树上路径权值和. 因为两 ...

  9. 洛谷P4630 [APIO2018]铁人两项 [广义圆方树]

    传送门 又学会了一个新东西好开心呢~ 思路 显然,假如枚举了起始点\(x\)和终止点\(y\),中转点就必须在它们之间的简单路径上. 不知为何想到了圆方树,可以发现,如果把方点的权值记为双联通分量的大 ...

随机推荐

  1. CF 570 D. Tree Requests

    D. Tree Requests http://codeforces.com/problemset/problem/570/D 题意: 一个以1为根的树,每个点上有一个字母(a-z),每次询问一个子树 ...

  2. netty之粘包分包的处理

    1.netty在进行字节数组传输的时候,会出现粘包和分包的情况.当个数据还好,如果数据量很大.并且不间断的发送给服务器,这个时候就会出现粘包和分包的情况. 2.简单来说:channelBuffer在接 ...

  3. DE1-SOC工程helloworld-第一篇(未完成)

    1. 参考官方的文档,第一个问题就是电脑上需要安装ubuntu虚拟机吗? 2. 创建一个“Hello world”工程:在Linux terminal 上打印信息. 3. 说是让安装个EDS软件,先去 ...

  4. solr 常见的问题整理 -费元星

    本文是我在开发过程中遇到的一些问题的整理,有些摘自网上别人的方法. 1. org.apache.solr.client.solrj.SolrServerException: Timeout occur ...

  5. Maven项目配置tomcat插件实现项目自动部署到远程服务器

    1.tomcat配置 在tomcat目录中的conf目录下找到tomcat-users.xml配置文件,然后搜索tomcat-users,进行tomcat用户的角色和权限配置,如下: <tomc ...

  6. mysql 优化笔记

    数据表总共81万条数 SQL explain ); 执行时间超级长,没有等到执行完成就终止了太慢了 explain一下 发现表bb 的select_type 为DEPENDENT SUBQUERY   ...

  7. 问题:MongoDB C# driver异常:Truncation resulted in data loss

    问题描述: 原因分析: MongoDB C#驱动在读取数据记录遇到数值类型字段时,如果没有设置允许截断,将抛出TruncationException. 解决方法: [BsonRepresentatio ...

  8. C# 浮点转时间

    想了大半天实在想不出什么更适合文章的标题... 就现在这个标题,挺好- - 什么是浮点转时间呢? 今天写的一个计时功能,想来想去还是现在这种解决方案比较合适 先上一张图在来讲解比较明了 如图:赛车游戏 ...

  9. hdu1789 Doing Homework again(贪心+排序)

    Doing Homework again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  10. OSG的组成结构

    OSG的组成结构 核心结构 OSG的功能类采用“命名空间+类名称”的形式来命名.命名空间的命名方式为:第一个单词小写,后继单词的首字母大写,例如osg.osgUtil.osgViewer等:类的名称则 ...