[BZOJ5463] [APIO2018] 铁人两项
题目链接
LOJ.
BZOJ.
Solution
先建圆方树。
我们考虑暴力,枚举一个点对,我们枚举的点都是圆点,然后统计中间那个点可以取的位置的数量,加起来就是答案。
那么怎么统计呢,我们对于每个点赋一个点权,方点点权为点双的大小,圆点点权为\(-1\)。
那么这条路径的点权和就是答案,注意要统计到端点的权值。
然后优化就很显然了,直接枚举每个点被算了多少次就行了,这个随便算一下就好了。
复杂度\(O(n)\)。
#include<bits/stdc++.h>
using namespace std;
#define int long long
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
#define lf double
#define ll long long
const int maxn = 4e5+10;
const int inf = 1e9;
const lf eps = 1e-8;
int cnt,n,m,val[maxn],ans,rt;
struct Tree {
int head[maxn],tot,vis[maxn],sz[maxn];
struct edge{int to,nxt;}e[maxn<<1];
void add(int u,int v) {e[++tot]=(edge){v,head[u]},head[u]=tot;}
void ins(int u,int v) {add(u,v),add(v,u);}
void dfs(int x,int fa) {
vis[x]=1,sz[x]=x<=n;
for(int i=head[x];i;i=e[i].nxt) if(e[i].to!=fa) dfs(e[i].to,x),sz[x]+=sz[e[i].to];
}
void solve(int x,int fa) {
int res=0,s=0;
for(int i=head[x];i;i=e[i].nxt)
if(e[i].to!=fa) res+=s*sz[e[i].to],s+=sz[e[i].to];
res+=s*(sz[rt]-sz[x]);res<<=1;ans+=res*val[x];
for(int i=head[x];i;i=e[i].nxt) if(e[i].to!=fa) solve(e[i].to,x);
}
}T;
struct Graph {
int head[maxn],tot,dfn[maxn],low[maxn],dfn_cnt,sta[maxn],top;
struct edge{int to,nxt;}e[maxn<<1];
void add(int u,int v) {e[++tot]=(edge){v,head[u]},head[u]=tot;}
void ins(int u,int v) {add(u,v),add(v,u);}
void tarjan(int x,int fa) {
dfn[x]=low[x]=++dfn_cnt,sta[++top]=x;
for(int v,i=head[x];i;i=e[i].nxt) {
if((v=e[i].to)==fa) continue;
if(!dfn[v]) tarjan(v,x),low[x]=min(low[x],low[v]);
else {low[x]=min(low[x],dfn[v]);continue;}
if(low[v]>=dfn[x]) {
++cnt;T.ins(cnt,x);val[cnt]++;
while(top) {
int now=sta[top--];T.ins(now,cnt),val[cnt]++;
if(now==v) break;
}
}
}
}
}G;
signed main() {
read(n),read(m);for(int i=1,x,y;i<=m;i++) read(x),read(y),G.ins(x,y);
cnt=n;for(int i=1;i<=n;i++) if(!G.dfn[i]) G.tarjan(i,0);
for(int i=1;i<=n;i++) val[i]=-1;
for(int i=1;i<=n;i++) if(!T.vis[i]) rt=i,T.dfs(i,0),T.solve(i,0),ans-=T.sz[i]*(T.sz[i]-1)*2;
write(ans);
return 0;
}
[BZOJ5463] [APIO2018] 铁人两项的更多相关文章
- 2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)
传送门 题意简述:给你一张无向图,问你满足存在从a−>b−>ca->b->ca−>b−>c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)(a,b,c) ...
- [BZOJ5463][APIO2018]铁人两项:Tarjan+圆方树
分析 根据题目中的要求,从\(s\)出发前往\(f\)一定可以,并且只可能经过这两个结点所在的点双连通分量和它们之间的点双连通分量,因此切换点\(c\)只能从这些点中选取. 建出圆方树后,因为圆方树上 ...
- [BZOJ5463][APIO2018]铁人两项(圆方树DP)
题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...
- [APIO2018]铁人两项 --- 圆方树
[APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...
- [APIO2018]铁人两项——圆方树+树形DP
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...
- [APIO2018]铁人两项 [圆方树模板]
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...
- [APIO2018]铁人两项(圆方树)
过了14个月再重新看这题,发现圆方树从来就没有写过.然后写了这题发现自己APIO2018打铁的原因竟然是没开long long,将树的部分的O(n)写挂了(爆int),毕竟去年APIO时我啥都不会,连 ...
- LOJ.2587.[APIO2018]铁人两项Duathlon(圆方树)
题目链接 LOJ 洛谷P4630 先对这张图建圆方树. 对于S->T这条(些)路径,其对答案的贡献为可能经过的所有点数,那么我们把方点权值设为联通分量的大小,可以直接去求树上路径权值和. 因为两 ...
- 洛谷P4630 [APIO2018]铁人两项 [广义圆方树]
传送门 又学会了一个新东西好开心呢~ 思路 显然,假如枚举了起始点\(x\)和终止点\(y\),中转点就必须在它们之间的简单路径上. 不知为何想到了圆方树,可以发现,如果把方点的权值记为双联通分量的大 ...
随机推荐
- vijos p1027休息中的小呆
休息中的小呆 描述 当大家在考场中接受考验(折磨?)的时候,小呆正在悠闲(欠扁)地玩一个叫“最初梦想”的游戏.游戏描述的是一个叫pass的有志少年在不同的时空穿越对抗传说中的大魔王chineseson ...
- Machine Learning Basic Knowledge
常用的数据挖掘&机器学习知识(点) Basis(基础): MSE(MeanSquare Error 均方误差),LMS(Least MeanSquare 最小均方),LSM(Least Squ ...
- Qt listwigwt item 加入自定义元素
<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255) ...
- 用Python实现一个端口扫描,只需简单几步就好
一.常见端口扫描的原理 0.秘密扫描 秘密扫描是一种不被审计工具所检测的扫描技术. 它通常用于在通过普通的防火墙或路由器的筛选(filtering)时隐藏自己. 秘密扫描能躲避IDS.防火墙.包过滤器 ...
- python程序设计——文件操作
分类 1.文本文件 存储常规字符串,由若干文本行组成,每行以换行符'\n'结尾 2.二进制文件 把对象以字节串存储,常见的图形图像.可执行文件.数据库文件office文档等 #创建文件 >> ...
- Ubuntu—安装网络调试工具
https://pan.baidu.com/s/1G6oHXp3SvcN6HMAMqTdqhA 1,在ubuntu的终端下,切换到网络调试工具所在的目录 $ cd 桌面/ #我的放在桌面上 2, ...
- 完全背包问题 :背包dp
题目描述: 有 N种物品和一个容量是 V 的背包,每种物品都有无限件可用.第 i 种物品的体积是 vi,价值是 wi. 求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大.输出最 ...
- idea clion编译器
RNMV64P0LA-eyJsaWNlbnNlSWQiOiJSTk1WNjRQMExBIiwibGljZW5zZWVOYW1lIjoiY24gdHUiLCJhc3NpZ25lZU5hbWUiOiIiL ...
- Servlet过滤器介绍之原理分析
zhangjunhd 的BLOG 写留言去学院学习发消息 加友情链接进家园 加好友 博客统计信息 51CTO博客之星 用户名:zhangjunhd 文章数:110 评论数:858 访问量:19 ...
- 六:YARN Node Labels
参考:http://dongxicheng.org/mapreduce-nextgen/hadoop-yarn-label-based-scheduling/ 为不同的DATANODE打标签,通过标签 ...