题目传送门 

Proud Merchants

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 7536    Accepted Submission(s): 3144

Problem Description
Recently, iSea went to an ancient country. For such a long time, it was the most wealthy and powerful kingdom in the world. As a result, the people in this country are still very proud even if their nation hasn’t been so wealthy any more.
The merchants were the most typical, each of them only sold exactly one item, the price was Pi, but they would refuse to make a trade with you if your money were less than Qi, and iSea evaluated every item a value Vi.
If he had M units of money, what’s the maximum value iSea could get?

 
Input
There are several test cases in the input.

Each test case begin with two integers N, M (1 ≤ N ≤ 500, 1 ≤ M ≤ 5000), indicating the items’ number and the initial money.
Then N lines follow, each line contains three numbers Pi, Qi and Vi (1 ≤ Pi ≤ Qi ≤ 100, 1 ≤ Vi ≤ 1000), their meaning is in the description.

The input terminates by end of file marker.

Output
For each test case, output one integer, indicating maximum value iSea could get.

Sample Input
2 10
10 15 10
5 10 5
3 10
5 10 5
3 5 6
2 7 3
 
Sample Output
5 11

  分析:一开始考虑直接01背包,将限制条件直接换成j>=q[i],但是发现这种思路是错的。显然物品的顺序会对其产生影响,那么就要考虑如何排序。然后试了几种排序发现都不对,还是K_lord和five20大佬讲过以后才明白。
  设两个物品a,b,那么如果在选了一个物品以后,要让剩余的钱能买到的物品尽可能的多,则要满足qa+pb<qb+pa。或者这么说,假如你有m的金钱,而且m>qb>qa,m-pa>qb,m-pb>qa,那么如果先选b就不能选a,但如果先选a就可以选b,那么上面的式子成立。再变换一下得到qa-pa<qb-pb,那么就按照这个式子排序然后01背包就OK了。
  Code:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<iomanip>
using namespace std;
const int N=5e3+;
int n,m,dp[N];
struct Node{int p,q,v;}a[N];
bool cmp(Node x,Node y)
{return x.q-x.p<y.q-y.p;}
int main()
{
ios::sync_with_stdio(false);
while(cin>>n>>m){
for(int i=;i<=n;i++)
cin>>a[i].p>>a[i].q>>a[i].v;
memset(dp,,sizeof(dp));
sort(a+,a+n+,cmp);
for(int i=;i<=n;i++)
for(int j=m;j>=a[i].q;j--)
dp[j]=max(dp[j],dp[j-a[i].p]+a[i].v);
cout<<dp[m]<<"\n";}
return ;
}

HDU3466 Proud Merchants [背包]的更多相关文章

  1. HDU3466 Proud Merchants[背包DP 条件限制]

    Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  2. hdu3466 Proud Merchants(01背包)

    https://vjudge.net/problem/HDU-3466 一开始想到了是个排序后的背包,但是排序的策略一直没对. 两个物品1和2,当p1+q2>p2+q1 => q1-p1& ...

  3. HDU--3466 Proud Merchants (01背包)

    题目http://acm.hdu.edu.cn/showproblem.php?pid=3466 分析:这个题目增加了变量q 因此就不能简单是使用01背包了. 网上看到一个证明: 因为如果一个物品是5 ...

  4. [hdu3466]Proud Merchants

    题目描述 Recently, iSea went to an ancient country. For such a long time, it was the most wealthy and po ...

  5. Proud Merchants(01背包变形)hdu3466

    I - Proud Merchants Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  6. Proud Merchants(POJ 3466 01背包+排序)

    Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  7. Proud Merchants(01背包)

    Proud Merchants Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) To ...

  8. HDU 3466 Proud Merchants(01背包)

    这道题目看出背包非常easy.主要是处理背包的时候须要依照q-p排序然后进行背包. 这样保证了尽量多的利用空间. Proud Merchants Time Limit: 2000/1000 MS (J ...

  9. hdu 3466 Proud Merchants 01背包变形

    Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

随机推荐

  1. js和jq实现全选反选

    在前端中用到全选反选的案例并不少,在这里呢我就实现这个功能给大家参考参考. 这里呢就先贴上我的html和css代码 <div class="wrap"> <tab ...

  2. [洛谷P3242] [HNOI2015]接水果

    洛谷题目链接:[HNOI2015]接水果 题目描述 风见幽香非常喜欢玩一个叫做 osu!的游戏,其中她最喜欢玩的模式就是接水果.由于她已经DT FC 了The big black, 她觉得这个游戏太简 ...

  3. 用python爬校花网

    import requests import re import hashlib,time def get_index(url): response=requests.get(url) if resp ...

  4. Ubuntu12.04 安装LAMP及phpmyadmin

    1.安装 Apache apt-get install apache2 2.安装 PHP5 apt-get install php5 libapache2-mod-php5 3.安装 MySQL ap ...

  5. 修改Maven仓库地址

    在%USERPROFILE%\.m2\settings.xml例如:C:\Users\LongShu\.m2\settings.xml 可以自定义Maven的一些参数, 复制%M2_HOME%\con ...

  6. Activity与Service的回收

    Android开发中,一个Application,运行在一个进程中.这个Application的各种组件(四种组件),通常是运行在同一个进程中的.但是,并不是绝对的.由于某种需求,比如,你可以设置Ap ...

  7. 【51NOD-0】1137 矩阵乘法

    [算法]简单数学 [题解] 对于A*B=C C中第i行第j列的数字由A中第i行和B中的j列的数字各自相乘后相加得到. 所以两个矩阵能相乘要求A的列数等于B的行数,复杂度为O(n3). #include ...

  8. 【洛谷 P4735】 最大异或和 (可持久化Trie)

    题目链接 维护整个数列的异或前缀和和\(s\),然后每次就是要求\(s[N]\text{^}x\text{^}s[k],l-1<=k<=r-1\)的最大值 如果没有\(l\)的限制,那么直 ...

  9. css优先级机制

    所谓CSS优先级,即是指CSS样式在浏览器中被解析的先后顺序.   1.important >(内联样式)Inline style  >(内部样式)Internal style sheet ...

  10. in_device结构和in_ifaddr结构

    /* ip配置块 */ struct in_device { /* 二层设备 */ struct net_device *dev; /* 引用计数 */ atomic_t refcnt; /* 是否正 ...