sklearn 随机森林方法
Notes The default values for the parameters controlling the size of the trees (e.g. max_depth, min_samples_leaf, etc.) lead to fully grown and unpruned trees
which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting
those parameter values. The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, max_features=n_features
and bootstrap=False, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a
deterministic behaviour during fitting, random_state has to be fixed. References [R157]
Breiman, “Random Forests”, Machine Learning, (), -, .
Methods
apply(X) |
Apply trees in the forest to X, return leaf indices. |
decision_path(X) |
Return the decision path in the forest |
fit(X, y[, sample_weight]) |
Build a forest of trees from the training set (X, y). |
get_params([deep]) |
Get parameters for this estimator. |
predict(X) |
Predict class for X. |
predict_log_proba(X) |
Predict class log-probabilities for X. |
predict_proba(X) |
Predict class probabilities for X. |
score(X, y[, sample_weight]) |
Returns the mean accuracy on the given test data and labels. |
set_params(**params) |
Set the parameters of this estimator. |
predict(X)-
Predict class for X.
The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees.
Parameters: X : array-like or sparse matrix of shape = [n_samples, n_features]
The input samples. Internally, its dtype will be converted to
dtype=np.float32. If a sparse matrix is provided, it will be converted into a sparsecsr_matrix.Returns: y : array of shape = [n_samples] or [n_samples, n_outputs]
The predicted classes.
predict_log_proba(X)-
Predict class log-probabilities for X.
The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest.
Parameters: X : array-like or sparse matrix of shape = [n_samples, n_features]
The input samples. Internally, its dtype will be converted to
dtype=np.float32. If a sparse matrix is provided, it will be converted into a sparsecsr_matrix.Returns: p : array of shape = [n_samples, n_classes], or a list of n_outputs
such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_.
predict_proba(X)-
Predict class probabilities for X.
The predicted class probabilities of an input sample are computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf.
Parameters: X : array-like or sparse matrix of shape = [n_samples, n_features]
The input samples. Internally, its dtype will be converted to
dtype=np.float32. If a sparse matrix is provided, it will be converted into a sparsecsr_matrix.Returns: p : array of shape = [n_samples, n_classes], or a list of n_outputs
such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_.
score(X, y, sample_weight=None)-
Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True labels for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
Mean accuracy of self.predict(X) wrt. y.
From Sklearn:
http://sklearn.apachecn.org/cn/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
sklearn 随机森林方法的更多相关文章
- 使用基于Apache Spark的随机森林方法预测贷款风险
使用基于Apache Spark的随机森林方法预测贷款风险 原文:Predicting Loan Credit Risk using Apache Spark Machine Learning R ...
- 解决sklearn 随机森林数据不平衡的方法
Handle Imbalanced Classes In Random Forest Preliminaries # Load libraries from sklearn.ensemble im ...
- sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 随机森林random forest及python实现
引言想通过随机森林来获取数据的主要特征 1.理论根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系 ...
- 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...
- 随机森林入门攻略(内含R、Python代码)
随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获 ...
- 随机森林学习-sklearn
随机森林的Python实现 (RandomForestClassifier) # -*- coding: utf- -*- """ RandomForestClassif ...
- sklearn中的随机森林
阅读了Python的sklearn包中随机森林的代码实现,做了一些笔记. sklearn中的随机森林是基于RandomForestClassifier类实现的,它的原型是 class RandomFo ...
- kaggle 欺诈信用卡预测——不平衡训练样本的处理方法 综合结论就是:随机森林+过采样(直接复制或者smote后,黑白比例1:3 or 1:1)效果比较好!记得在smote前一定要先做标准化!!!其实随机森林对特征是否标准化无感,但是svm和LR就非常非常关键了
先看数据: 特征如下: Time Number of seconds elapsed between each transaction (over two days) numeric V1 No de ...
随机推荐
- img转base64的两种方式的比较
关于图片转base64然后提交后台,项目中一直用的是canvas的toDataUrl方法,但是之前看HTML5 API文档的时候,一直记得好像有个叫fileReader的东西也可以做到.于是过年无事的 ...
- 修复CentOS文件系统
CentOS经常出现一些像 Cannot mkdir: Structure needs cleaning 的文件系统错误,而且在正常模式下无法umount来进行修复.很多时候只能在rescue模式下进 ...
- 万里长征第二步——django个人博客(第五步 ——配置后台admin)
在urls.py文件中配置admin路径 from django.conf.urls import url from django.contrib import admin from blog.vie ...
- screen space shadowmap unity
unity用到了screen space shadow map 1.camera 在light pos 生成depth1 2.screen space depth2 3.根据depth1 depth2 ...
- select()/poll() 的内核实现
mark 引用:http://janfan.cn/chinese/2015/01/05/select-poll-impl-inside-the-kernel.html 文章 select()/poll ...
- 转:CodeReview 如何做?
http://www.cnblogs.com/IT-Bear/archive/2012/07/04/2576367.html
- C# SQLite 创建数据库的方法增删查改语法和命令
SQLite介绍 SQLite是一个开源.免费的小型RDBMS(关系型数据库),能独立运行.无服务器.零配置.支持事物,用C实现,内存占用较小,支持绝大数的SQL92标准. SQLite数据库官方主页 ...
- XUtils3框架的初始体验(一)
1.开源地址 https://github.com/wyouflf/xUtils3.git 如果使用eclipse可以 点击这里下载aar文件, 然后用zip解压, 取出jar包和s ...
- Office 如何下载网页的视频 JWPlayer的内嵌视频
右击页面空白处,查看页面源代码 在里面搜索mp4或者swf,video,一般网页中的视频都是这些格式,仔细找一定能找到对应的地址 然后复制到迅雷下载即可
- springMVC 头像裁剪上传并等比压
第一次写头像裁剪上传,原本想着直接本地预览裁剪再上传,可是时间有限,jquery.jcrop貌似并没有对 假设是ie下图片预览效果是滤镜做的 做出对应处理,也没有时间去改;仅仅好将就一下先把图片上传 ...