题目名字是什么就不能往那方面想。

每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链。

使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右下方的所有点都有边。

从右上往左下DP统计答案即可。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int T,n,m,a[N][N],dp[N][N]; int main(){
freopen("bzoj3997.in","r",stdin);
freopen("bzoj3997.out","w",stdout);
for (scanf("%d",&T); T--; ){
scanf("%d%d",&n,&m);
rep(i,,n) rep(j,,m) scanf("%d",&a[i][j]);
rep(i,,m+) dp[][i]=;
rep(i,,n) dp[i][m+]=;
rep(i,,n) for (int j=m; j; j--) dp[i][j]=max(dp[i-][j+]+a[i][j],max(dp[i-][j],dp[i][j+]));
printf("%d\n",dp[n][]);
}
return ;
}

[BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)的更多相关文章

  1. 【BZOJ3997】【TJOI2015】组合数学 Dilworth定理 DP

    题目描述 有一个\(n\times m\)的网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完. 此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子 ...

  2. 【bzoj3997】[TJOI2015]组合数学 Dilworth定理结论题+dp

    题目描述 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  3. BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)

    Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一 ...

  4. BZOJ3997 TJOI2015组合数学(动态规划)

    copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...

  5. BZOJ3997: [TJOI2015]组合数学(网络流)

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 405  Solved: 284[Submit][Status ...

  6. BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】

    题目 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少 ...

  7. bzoj3997[TJOI2015]组合数学(求最长反链的dp)

    组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  8. bzoj3997[TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...

  9. bzoj千题计划298:bzoj3997: [TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...

随机推荐

  1. Codeforces Round #411 (Div. 2) A-F

    比赛时候切了A-E,fst了A Standings第一页只有三个人挂了A题,而我就是其中之一,真™开心啊蛤蛤蛤 A. Fake NP time limit per test 1 second memo ...

  2. 【BZOJ】1188 [HNOI2007]分裂游戏

    [算法]博弈论 [题解] 我们的目的是把游戏拆分成互不影响的子游戏,考虑游戏内的转移. 如果把每堆视为子游戏,游戏之间会相互影响,不成立. 将每堆的一个石子视为子游戏,其产生的石子都在同一个子游戏中. ...

  3. Calendar Provider

    英文原文:http://developer.android.com/guide/topics/providers/calendar-provider.html 关键类 CalendarContract ...

  4. vue双向数据绑定的原理-object.defineProperty() 用法

    有关双向数据绑定的原理 关于数据双向绑定的理解:利用了 Object.defineProperty() 这个方法重新给对象定义了新属性,在操作新属性分别为为获取属性值(调用get方法)和设置属性值(调 ...

  5. Eureka服务下线(Cancel)源码分析

    Cancel(服务下线) 在Service Provider服务shut down的时候,需要及时通知Eureka Server把自己剔除,从而避免其它客户端调用已经下线的服务,导致服务不可用. co ...

  6. Sberbank Russian Housing Market比赛总结

    第一次真正意义上参加kaggle比赛,都是工作之余看看别人的kernel,然后整理整理自己的分析代码. 总体来说,本次比赛对我而言更像一个入门比赛,更多的是走走kaggle比赛的整个流程,看看高手们都 ...

  7. Android控件——ToggleButton多状态按钮(实现灯泡的开关)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAxoAAAFxCAIAAAB7jkm1AAAgAElEQVR4nOy9eXgUVb7/Dy7j3BnH8T

  8. •搭建LAMP环境及快速部署双网站并实现基于域名的虚拟主机

    本节所讲内容: 实战:搭建LAMP环境及快速部署双网站并实现基于域名的虚拟主机 LAMP架构:??? Linux+Apache+Mysql+PHP Linux+Apache+Mysql/MariaDB ...

  9. Git常规配置与基本用法

    Git环境配置 一. 全局配置 1. 配置文件 git全局配置文件.gitconfig默认在当前系统用户文件夹下,window可运行%USERPROFILE%查找,Mac系统在cd ~查找. 具体配置 ...

  10. mongodb 学习笔记 2 --- 修改器

    修改器是为了爱update文档时,不需要传入整个文档就能修改当前文档的某个属性值,修改器用法如下: 假设数据库中foo集合中存在如下文档:{"name":"jack&qu ...