题目链接

题目

题目描述

You have N integers A1, A2, ... , AN. You are asked to write a program to receive and execute two kinds of instructions:

  1. C a b means performing \(A_i = A_i^2 \mod 2018\) for all Ai such that a ≤ i ≤ b.
  2. Q a b means query the sum of Aa, Aa+1, ..., Ab. Note that the sum is not taken modulo 2018.

输入描述

The first line of the input is T(1≤ T ≤ 20), which stands for the number of test cases you need to solve.

The first line of each test case contains N (1 ≤ N ≤ 50000).The second line contains N numbers, the initial values of A1, A2, ..., An. 0 ≤ Ai < 2018. The third line contains the number of operations Q (0 ≤ Q ≤ 50000). The following Q lines represents an operation having the format "C a b" or "Q a b", which has been described above. 1 ≤ a ≤ b ≤ N.

输出描述

For each test case, print a line "Case #t:" (without quotes, t means the index of the test case) at the beginning.

You need to answer all Q commands in order. One answer in a line.

示例1

输入

1
8
17 239 17 239 50 234 478 43
10
Q 2 6
C 2 7
C 3 4
Q 4 7
C 5 8
Q 6 7
C 1 8
Q 2 5
Q 3 4
Q 1 8

输出

Case #1:
779
2507
952
6749
3486
9937

题解

知识点:线段树,数论。

显然,区间同余是没法直接运用懒标记的,我们需要找到能使用懒标记的结构。

容易证明, \(A_i = A_i^2 \mod 2018\) 运算在有限次操作后一定会进入一个循环节,且长度的最小公倍数不超过 \(6\) 。而且可以发现,进入循环的需要的操作次数其实很少。

注意到,进入循环的区间可以预处理出所在循环节的所有值,并用一个指针指向当前值即可,随后每次修改相当于在环上移动指针,显然可以懒标记。对于未进入循环节的区间,先采用单点修改,直到其值进入循环节。

因此,我们先预处理枚举 \([0,2018)\) 所有数是否在循环节内,用 \(cyc\) 数组记录每个数的所在循环节的长度。如果某数的循环节长度非 \(0\) ,则其为循环节的一部分。我们对循环节长度取最小公倍数 \(cyclcm\),以便统一管理。

对此,区间信息需要维护区间是否进入循环 \(lp\) 、区间循环值 \(sum\) 数组、区间值指针 \(pos\) 。若未进入循环,则值存 \(sum[0]\) ,且 \(pos = 0\) ;若进入循环,则 \(sum\) 存循环的各个值, \(pos\) 指向当前值的位置。

区间合并,有两种情况:

  1. 存在子区间未进入循环,则区间未进入循环,最终值由子区间当前值相加。
  2. 子区间都进入循环,则区间进入循环,顺序遍历子区间对应的循环值,并将和更新到区间的 \(sum\) 。

区间修改只需要维护指针平移总量 \(cnt\) 。

区间修改,有两种情况:

  1. 区间未进入循环,则继续递归子区间,直到单点修改。每次单点修改后,检查是否进入循环,若进入循环,则预处理出 \(sum\) 。
  2. 区间已进入循环,则直接平移 \(pos\) 即可。

标记修改,直接加到标记上即可,可以模 \(2018\)。注意,当且仅当区间进入循环后标记才有意义,但事实上,未进入循环的区间标签始终为 \(0\) ,对修改没有影响,无需特判。

这道题实际上是洛谷P4681的弱化版,我这里使用了通解的做法,比只针对这道题的做法要慢一点。只针对这道题的做法是基于另一个更进一步的结论,所有数字在 \(6\) 次操作之后一定进入循环,那么只需要记录一个单点是否操作 \(6\) 次作为检查条件即可,省去了枚举 \([0,2018)\) 所有数字的循环节长度的时间。

时间复杂度 \(O((n+m) \ log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; const int P = 2018;
int cyc[P];
int cyclcm; void init_cyc() {
cyclcm = 1;
for (int i = 0;i < P;i++) {
cyc[i] = 0;
vector<int> vis(P);
for (int j = 1, x = i;;j++, x = x * x % P) {
if (vis[x]) {
if (x == i) {
cyc[i] = j - vis[i];
cyclcm = lcm(cyclcm, cyc[i]);
}
break;
}
vis[x] = j;
}
}
} class SegmentTreeLazy {
struct T {
array<int, 6> sum;
int pos;
bool lp;
};
struct F {
int cnt;
};
int n;
vector<T> node;
vector<F> lazy; void push_up(int rt) {
node[rt].lp = node[rt << 1].lp && node[rt << 1 | 1].lp;
node[rt].pos = 0;
if (node[rt].lp)
for (int i = 0, l = node[rt << 1].pos, r = node[rt << 1 | 1].pos;
i < cyclcm;
i++, ++l %= cyclcm, ++r %= cyclcm)
node[rt].sum[i] = node[rt << 1].sum[l] + node[rt << 1 | 1].sum[r];
else node[rt].sum[0] = node[rt << 1].sum[node[rt << 1].pos] + node[rt << 1 | 1].sum[node[rt << 1 | 1].pos];
} void push_down(int rt) {
(node[rt << 1].pos += lazy[rt].cnt) %= cyclcm;
(lazy[rt << 1].cnt += lazy[rt].cnt) %= cyclcm;
(node[rt << 1 | 1].pos += lazy[rt].cnt) %= cyclcm;
(lazy[rt << 1 | 1].cnt += lazy[rt].cnt) %= cyclcm;
lazy[rt].cnt = 0;
} void check(int rt) {
node[rt].pos = 0;
if (cyc[node[rt].sum[0]]) {
node[rt].lp = 1;
for (int i = 1;i < cyclcm;i++)
node[rt].sum[i] = node[rt].sum[i - 1] * node[rt].sum[i - 1] % P;
}
else node[rt].lp = 0;
} void update(int rt, int l, int r, int x, int y) {
if (r < x || y < l) return;
if (x <= l && r <= y && node[rt].lp) {
++node[rt].pos %= cyclcm;
++lazy[rt].cnt %= cyclcm;
return;
}
if (l == r) {
node[rt].sum[0] = node[rt].sum[0] * node[rt].sum[0] % P;
check(rt);
return;
}
push_down(rt);
int mid = l + r >> 1;
update(rt << 1, l, mid, x, y);
update(rt << 1 | 1, mid + 1, r, x, y);
push_up(rt);
} int query(int rt, int l, int r, int x, int y) {
if (r < x || y < l) return 0;
if (x <= l && r <= y) return node[rt].sum[node[rt].pos];
push_down(rt);
int mid = l + r >> 1;
return query(rt << 1, l, mid, x, y) + query(rt << 1 | 1, mid + 1, r, x, y);
} public:
SegmentTreeLazy(const vector<int> &src) { init(src); } void init(const vector<int> &src) {
assert(src.size() >= 2);
n = src.size() - 1;
node.assign(n << 2, { {},0,0 });
lazy.assign(n << 2, { 0 });
function<void(int, int, int)> build = [&](int rt, int l, int r) {
if (l == r) {
node[rt].sum[0] = src[l];
check(rt);
return;
}
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
push_up(rt);
};
build(1, 1, n);
} void update(int x, int y) { update(1, 1, n, x, y); } int query(int x, int y) { return query(1, 1, n, x, y); }
};
//* 朴素操作开销太大(array复制),因此全部展开 bool solve() {
int n;
cin >> n;
vector<int> a(n + 1);
for (int i = 1;i <= n;i++) cin >> a[i]; init_cyc();
SegmentTreeLazy sgt(a); int m;
cin >> m;
while (m--) {
char op;
int l, r;
cin >> op >> l >> r;
if (op == 'C') sgt.update(l, r);
else cout << sgt.query(l, r) << '\n';
}
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
for (int i = 1;i <= t;i++) {
cout << "Case #" << i << ":" << '\n';
if (!solve()) cout << -1 << '\n';
}
return 0;
}

NC17383 A Simple Problem with Integers的更多相关文章

  1. POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)

    A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...

  2. POJ 3468 A Simple Problem with Integers(线段树/区间更新)

    题目链接: 传送门 A Simple Problem with Integers Time Limit: 5000MS     Memory Limit: 131072K Description Yo ...

  3. poj 3468:A Simple Problem with Integers(线段树,区间修改求和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 58269   ...

  4. ACM: A Simple Problem with Integers 解题报告-线段树

    A Simple Problem with Integers Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%lld & %l ...

  5. poj3468 A Simple Problem with Integers (线段树区间最大值)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92127   ...

  6. POJ3648 A Simple Problem with Integers(线段树之成段更新。入门题)

    A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 53169 Acc ...

  7. BZOJ-3212 Pku3468 A Simple Problem with Integers 裸线段树区间维护查询

    3212: Pku3468 A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 128 MB Submit: 1278 Sol ...

  8. POJ 3468 A Simple Problem with Integers(线段树区间更新区间查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92632   ...

  9. A Simple Problem with Integers(树状数组HDU4267)

    A Simple Problem with Integers Time Limit: 5000/1500 MS (Java/Others) Memory Limit: 32768/32768 K (J ...

  10. A Simple Problem with Integers

    A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 77964 Acc ...

随机推荐

  1. 持续集成环境(4)-Jenkins凭证管理

    凭据可以用来存储需要密文保护的数据库密码.Gitlab密码信息.Docker私有仓库密码等,以便 Jenkins可以和这些第三方的应用进行交互. 安装Credentials Binding插件 要在J ...

  2. springboot修改事务隔离级别

    [SpringBoot]事务的隔离级别.Spring的事务传播机制_51CTO博客_springboot事务隔离级别

  3. Swagger UI教程 API 文档神器 搭配Node使用 web api 接口文档 (转)

    http://www.68idc.cn/help/makewebs/qitaasks/20160621620667.html 两种方案 一.Swagger 配置 web Api 接口文档美化 二.通过 ...

  4. A better jump —— 优化游戏中的跳跃

    之前一提起角色的跳跃,想当然的想法就是:给角色一个向上的初速,然后由Unity的物理系统接管就好了嘛,这样忽略空气摩擦的影响,根据重力加速度,角色向上跳到最高点的时间和由最高点落下的时间相等,不是很合 ...

  5. MySQL 分组排序,取第一条

    select t1.* from coal_installed_capacity t1where NOT EXISTS (select * from coal_installed_capacity t ...

  6. 密码破解-john的使用

    john类似于hashcat一样,也是一款密码破解方式,john跟专注于系统密码的破解,并且和hashcat一样在kali中自带 hash请见hash的简单使用 重要的参数 --wordlist=字典 ...

  7. Spring Boot 入门学习笔记

    0x01 前言 ​ 大一选修课C++/JAVA二选一,选学了C++.但在后续课程中,发现JAVA的用途很多,所以简单学习了JAVA的语法.同时,也开始了我的Spring Boot 春季|家 (spri ...

  8. 孙勇男:实时视频 SDK 黑盒测试架构丨Dev for Dev 专栏

    Dev for Dev 专栏全称为 Developer for Developer,该专栏是声网与 RTC 开发者社区共同发起的开发者互动创新实践活动.透过工程师视角的技术分享.交流碰撞.项目共建等多 ...

  9. golang中关于死锁的思考与学习

    1.Golang中死锁的触发条件 1.1 书上关于死锁的四个必要条件的讲解 发生死锁时,线程永远不能完成,系统资源被阻碍使用,以致于阻止了其他作业开始执行.在讨论处理死锁问题的各种方法之前,我们首先深 ...

  10. Condition 接口

    系统性学习,移步IT-BLOG Java 对象拥有一组监视方法:wait().wait(long timeout).notify() 以及 notifyAll() 方法,这些方法与 synchroni ...