一个1A主席树的男人,沦落到褪水DP举步维艰

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long //#define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin); #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 507;
int f_max[N][N], f_min[N][N], a[N], sum[N]; int main(){
FileOpen();
int n;
io >> n;
R(i,1,n){
io >> a[i];
a[i + n] = a[i];
}
R(i,1, n << 1) sum[i] = sum[i - 1] + a[i]; R(len, 2, n){
R(l, 1, n << 1){
int r = l + len - 1;
if(r > (n << 1)) continue; f_min[l][r] = 0x3f3f3f3f; R(k, l, r - 1){
f_min[l][r] = Min(f_min[l][r], f_min[l][k] + f_min[k+1][r] + sum[r] - sum[l-1]);
f_max[l][r] = Max(f_max[l][r], f_max[l][k] + f_max[k+1][r] + sum[r] - sum[l-1]);
}
}
} int maxx = 0, minn = 0x7fffffff;
R(i,1,n){
maxx = Max(maxx, f_max[i][i + n - 1]);
minn = Min(minn, f_min[i][i + n - 1]);
} printf("%d\n%d", minn, maxx); return 0;
}

Luogu1880 [NOI1995]石子合并 (区间DP)的更多相关文章

  1. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  2. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  3. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  4. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  5. P1880 [NOI1995]石子合并 区间dp+拆环成链

    思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...

  6. 石子合并 区间dp模板

    题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...

  7. 石子合并 区间DP模板题

    题目链接:https://vjudge.net/problem/51Nod-1021 题意 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石 ...

  8. P1880 [NOI1995]石子合并[环形DP]

    题目来源:洛谷 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将 ...

  9. 洛谷 P1080 石子合并 ( 区间DP )

    题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...

  10. 石子合并——区间dp

    石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...

随机推荐

  1. 理解RESTful Api设计

    REST REST(REpresentational State Transfer)是 Roy Fielding 博士于 2000 年在他的博士论文中提出来的一种软件架构风格(一组架构约束条件和原则) ...

  2. 深入C++05:运算符重载

    运算符重载 1.复数类 运算符重载目的:使对象运算表现得和编译器内置类型一样: 复数类例子 #include<iostream> using namespace std; class CC ...

  3. 【NOIP2017 提高组正式赛】列队 题解

    题目大意 有一个 \(n\times m\) 的方阵,每次有 \((x,y)\) 离开,离开后有两个命令 向左看齐.这时第一列保持不动,所有学生向左填补空缺.这条指令之后,空位在第 \(x\) 行第 ...

  4. MAC NGINX PHP XDEBUG

    1. 安装 homebrew 2. 安装nginx ; 终端运行 brew install nginx: 1)给nginx 设置管理员权限:如果不设置管理员权限,80端口是不能监听的: #这里的目录根 ...

  5. php7.1 安装amqp扩展

    在php开发中使用rabbitmq消息队列时,需要安装PHP扩展amqp,安装步骤如下: 直接使用pecl进行amqp扩展的安装, /usr/local/php/bin/pecl install am ...

  6. JS:String

    String数据类型:字符串 字符串是存储字符的变量. 字符串可以是引号中(可以使用单引号或双引号)的任意文本. var a = "abc"; var b = "123& ...

  7. Spring框架系列(2) - Spring简单例子引入Spring要点

    上文中我们简单介绍了Spring和Spring Framework的组件,那么这些Spring Framework组件是如何配合工作的呢?本文主要承接上文,向你展示Spring Framework组件 ...

  8. linux函数与数组

    1. 函数的定义 方法1: function_name () { statement } 方法2: function function_name () { statement } --先定义后使用 例 ...

  9. java获取本地json格式的内容

    前言 该功能模块基于springBoot,自己在开发中遇到相关功能开发,总结如写: 1.首先将所需要获取的json文件放在项目resource目录下: 2.所需要的pom依赖: <depende ...

  10. NC20806 区区区间间间

    NC20806 区区区间间间 题目 题目描述 给出长度为n的序列a,其中第i个元素为 \(a_i\),定义区间(l,r)的价值为 \(v_{l,r} = max(a_i - a_j | l \leqs ...