在互联网公司中,MySQL是使用最多的数据库,那么在并发量大、数据量大的互联网业务中,如果高效的使用MySQL才能保证服务的稳定呢?根据本人多年运维管理经验的总结,梳理了一些核心的开发规范,希望能给大家带来一些帮助。
 
一、基础规范
  • 数据库字符集默认使用utf8mb4,兼容utf8,并支持存储emoji表情等四字节内容
  • 禁止在线上生产环境做数据库压力测试
  • 禁止从测试、开发环境、本机直连线上生产数据库
  • 禁止在数据库中存储明文密码
  • 禁止在数据库中存储图片、文件等大数据
  • 禁止将业务日志实时保存到数据库,建议保存到日志文件,对于统计后的结果再存放到mysql中
  • 禁止线上核心业务使用mysql存储过程、视图、触发器、Event、InnoDB外键约束等,这些容易将业务逻辑和db耦合在一起,而且在MySQL的这些特性中存在严重BUG
  • 业务部门的推广活动,请提前通知dba进行服务和访问评估。
 
二、库表设计
  • 库名、表名、字段名必须使小写字母,并采用下划线分割;对相关功能的表应当使用相同前缀,如job_xxx,前缀通常为库名或依赖主实体对象:数据库名称约定:db_xxx
  • 数据库表默认存储引擎为InnoDB,所有环境禁止使用MyISAM、Memory等其他存储引擎
  • 所有的表及字段都必须有备注,详细说明表及字段的含义
  • 涉及货币金额或其他精度敏感的数据必须使用定点数DECIMAL替代FLOAT和DOUBLE
  • 库名、表名、字段名禁止使用MySQL保留字,如date、like、desc、return等
  • 控制表字段数,单表不超过50个纯INT/20个VARCHAR(10)字段等同存储体积的字段数,上限控制在20~50
  • 字段长度只分配真正需要的空间
问题:使用VARCHAR(5) 和VARCHAR(200) 存储’hello’的磁盘空间开销是一样的,使用更短的列有什么优势吗?
更大的定义列会消耗更多的内存,因为MySQL通常会分配固定大小的内存块来保存内部值,尤其是使用内存临时表进行排序或操作时会特别糟糕
 
三、索引设计
基本规则:索引不是越多越好,能不添加的索引尽量不要添加,过多的索引会严重降低数据插入和更新的效率,并带来更多的读写冲突和死锁!
  • 索引名称必须使用小写,普通索引按照“idx_字段名_字段名[_字段名]”进行命名,唯一索引按照“uniq_字段名_字段名[_字段名]”进行命名”
  • 表必须有主键,推荐使用独立于业务的AUTO_INCREMENT列或全局ID生成器做主键,禁止使用多字段做联合主键
  • 不使用UUID/MD5/HASH等函数生成的无规则值做主键,效率极差
  • 索引数量控制
  • 单张表中索引数量不超过5个
  • 单个索引中的字段数不超过5个
  • 对字符串使用前缀索引,前缀索引长度不超过10个字符
  • 索引字段的顺序需要考虑每个字段去重之后的数量,区分度最大的【个数最多的】放在前面。
  • 合理创建联合索引(避免冗余),符合最左前缀原则:(a,b,c) 相当于 (a) 、(a,b) 、(a,b,c)
  • 可能需要添加索引的字段:
  • ORDER BY,GROUP BY,DISTINCT的字段需要添加在索引的后面
  • UPDATE、DELETE语句需要根据WHERE条件添加索引
  • 对于JOIN操作,需要在JOIN字段上建立索引
  • 线上慎用FORCE INDEX,使用前需要和DBA沟通,并得到DBA的测试允许
  • 线上OLTP系统中禁止使用外键,高并发时极易引起死锁等问题
  • 索引使用禁忌
  • 不使用%前导的查询,如like “%ab”
  • 不使用负向查询,如not in/not like/<>
  • 不在低区分度的列上建立索引,例如“性别”
  • 不在索引列进行数学运算和函数运算
示例:假设在表tab中id建立了索引
  • Select col_A,col_B from tab where id + 1 > 10001 不会使用索引
  • Select col_A,col_B from tab where id > 10001 – 1 会使用索引
 
四、SQL优化
  • 线上尽量少使用大SQL,可能一条大SQL就把整个数据库堵死,将复杂SQL拆分为多条简单SQL,化繁为简
  • 一条SQL只能在一个CPU上运算,如果SQL比较复杂执行效率会非常低【8.0之后开始支持单SQL多CPU核执行,但是效果有限】
  • 简单SQL缓存命中率更高
  • 减少锁表时间
  • 充分利用多核CPU,提高并发效率
  • 减少MySQL端的数学运算和逻辑判断,避免SQL语句出现md5()、order by rand()等
  • 尽量少用SELECT * ,只取需要的数据列, 避免无谓的IO、CPU和网络开销
  • WHERE条件中,同一字段改写OR为IN(),IN包含的值不应过多,默认不超过200个,IN里禁止使用子查询
  • 过滤表记录合并且不去重的情况,改写UNION为UNION ALL
  • 减少使用拼接SQL,使用预编译语句,降低SQL注入概率
  • WHERE条件中的非等值条件(IN、BETWEEN、<、<=、>、>=)会导致使用不了联合索引的后续字段,注意避免
  • WHERE条件比较,字段类型和传入值必须保证类型一致,避免隐式转换
示例:
字段: code varchar(50) NOT NULL COMENT ‘编码’ #code上建立了索引
SELECT id,name,addr from tab_name where code=10001; 不会使用索引
SELECT id,name,addr from tab_name where code='10001'; 会使用索引
  • Limit分页优化
  • 传统分页:
Select * from table limit 10000,10;
LIMIT原理:
Limit 10000,10 偏移量越大则越慢
  • 推荐分页:
  • 分页方式一:
Select * from table WHERE id>=23423 limit 11; #10+1 (每页10条)
Select * from table WHERE id>=23434 limit 11;
  • 分页方式二:
Select * from table WHERE id >= ( select id from table limit 10000,1 ) limit 10;
  • 分页方式三:
Select * from table INNER JOIN (SELECT id from table limit 10000,10) USING(id)
  • 分页方式四:
  • 程序取ID: Select id from table limit 10000,10;
  • Select * from table WHERE ID in(123,456…);
最后说明:
上述规范是多年MySQL数据库使用的经验总结,希望能给大家带来一些启发和帮助!
如果你还想看更多优质原创文章,欢迎关注我的公众号「数据库架构师」,提升数据库技能。
 

一文总结高并发大数据量下MySQL开发规范【军规】的更多相关文章

  1. 【Itext】解决Itext5大并发大数据量下输出PDF发生内存溢出outofmemery异常

    尼玛,这个问题干扰了我两个星期!! 关键字 itext5 outofmemery 内存溢出 大数据 高并发 多线程 pdf 导出 报表 itext 并发 在读<<iText in Acti ...

  2. 大数据量下MySQL插入方法的性能比较

    不管是日常业务数据处理中,还是数据库的导入导出,都可能遇到需要处理大量数据的插入.插入的方式和数据库引擎都会对插入速度造成影响,这篇文章旨在从理论和实践上对各种方法进行分析和比较,方便以后应用中插入方 ...

  3. php和node高并发 大数据量怎么处理

    有的时候可能因为疏忽忘记注册Service直接就使用了,使用那个Service时会报异常.这种情况项目都是可以编译通过的,是一个不太容易发现的BUG,如果那个Service在测试时没有覆盖到这个BUG ...

  4. c#中@标志的作用 C#通过序列化实现深表复制 细说并发编程-TPL 大数据量下DataTable To List效率对比 【转载】C#工具类:实现文件操作File的工具类 异步多线程 Async .net 多线程 Thread ThreadPool Task .Net 反射学习

    c#中@标志的作用   参考微软官方文档-特殊字符@,地址 https://docs.microsoft.com/zh-cn/dotnet/csharp/language-reference/toke ...

  5. 大数据量时Mysql的优化

    (转自网络) 如今随着互联网的发展,数据的量级也是撑指数的增长,从GB到TB到PB.对数据的各种操作也是愈加的困难,传统的关系性数据库已经无法满足快速查询与插入数据的需求.这个时候NoSQL的出现暂时 ...

  6. mysql大数据量下的分页

    mysql大数据量使用limit分页,随着页码的增大,查询效率越低下. 测试实验 1.   直接用limit start, count分页语句, 也是我程序中用的方法: select * from p ...

  7. 大数据量下的SQL Server数据库自身优化

    原文: http://www.d1net.com/bigdata/news/284983.html 1.1:增加次数据文件 从SQL SERVER 2005开始,数据库不默认生成NDF数据文件,一般情 ...

  8. 大数据量下,分页的解决办法,bubuko.com分享,快乐人生

    大数据量,比如10万以上的数据,数据库在5G以上,单表5G以上等.大数据分页时需要考虑的问题更多. 比如信息表,单表数据100W以上. 分页如果在1秒以上,在页面上的体验将是很糟糕的. 优化思路: 1 ...

  9. mysql百万级别重排主键id(网上的删除重建id在大数据量下会出错)

    网上教程: 先删除旧的主键 再新建主键 :数据量少时没问题,不会出现主键自增空缺间隔的情况(如:1,2,3,5):但是大数据量时会出现如上所述问题(可能是内部mysql多进程或多线程同时操作引起问题) ...

随机推荐

  1. 【Java面试】什么是 ISR,为什么需要引入 ISR

    Hi,大家好,我是Mic. 一个工作5年的粉丝,在简历上写精通Kafka. 结果在面试的时候直接打脸. 面试官问他:"什么是ISR,为什么需要设计ISR" 然后他一脸懵逼的看着面试 ...

  2. Elasticsearch面试题

    Elasticsearch面试题 1.Elasticsearch是如何实现master选举的? 1.对所有可以成为master的节点根据nodeId排序,每次选举每个节点都把自己所知道节点排一次序,然 ...

  3. [零基础学IoT Pwn] 复现Netgear WNAP320 RCE

    [零基础学IoT Pwn] 复现Netgear WNAP320 RCE 0x00 前言: 这是[零基础学IoT Pwn]的第二篇,上篇我们搭好了仿真环境后,模拟运行了Netgear WNAP320固件 ...

  4. 坐标PCB公司,想做实时数仓、推生产线看板,和Tapdata Cloud的偶遇来得就是这么凑巧

      Tapdata Cloud 是一款很有「前途」的产品.--Tapdata Cloud 用户 | 一线DBA@某PCB全球百强企业   从首次提出这一概念起,已经 10 年过去了,"工业互 ...

  5. MyBatis项目创建

    一.开发环境的准备 总览: mybatis搭建过程: 1.导入jar 2.创建mybatis的核心(全局)配置文件mybatis-config.xml,并配置 3.创建映射文件XxxMapper.xm ...

  6. 10分钟带你进入Swagger的世界,快来看一看吧

    什么是Swagger? 如下引用swagger官方的解释 Swagger is a powerful yet easy-to-use suite of API developer tools for ...

  7. 使用Java客户端发送消息和消费的应用

    体验链接:https://developer.aliyun.com/adc/scenario/fb1b72ee956a4068a95228066c3a40d6 实验简介 本教程将Demo演示使用jav ...

  8. 构建 API 的7个建议【翻译】

    迄今为止,越来越多的企业依靠API来为客户提供服务,以确保竞争的优势和业务可见性.出现这个情况的原因是微服务和无服务器架构正变得越来越普遍,API作为其中的关键节点,继承和承载了更多业务. 在这个前提 ...

  9. 2022-7-9 html 第七组 刘昀航

    ​ 一.基础认知 1.1 认识网页 网页的组成: 文字.图片.音频.视频.超链接 网页背后的本质:前端程序员写的代码 前端的代码通过什么软件转换成用户眼中的页面:浏览器转化(解析和渲染) 1.2 5大 ...

  10. Lambda表达式无参数无返回值的练习和Lambda表达式有参数有返回值的练习

    题目: 给定一个厨子Cook接口,内容唯一的抽象方法makeFood,且无参数.无返回值.如下: public interface Cook{ void makeFood(); } 在下面的代碼中,使 ...