3.7:基于Weka的K-means聚类的算法示例
〇、目标
1、使用Weka平台,并在该平台使用数据导入、可视化等基本操作;
2、对K-means算法的不同初始k值进行比较,对比结果得出结论。
一、打开Weka3.8并导入数据

二、导入数据



三、SimpleKMeans算法聚类



四、运行观察结果
1、观察聚类输出结果



2、修改参数值重新运行并观察结果


3、可视化聚类结果


3.7:基于Weka的K-means聚类的算法示例的更多相关文章
- R与数据分析旧笔记(十五) 基于有代表性的点的技术:K中心聚类法
基于有代表性的点的技术:K中心聚类法 基于有代表性的点的技术:K中心聚类法 算法步骤 随机选择k个点作为"中心点" 计算剩余的点到这个k中心点的距离,每个点被分配到最近的中心点组成 ...
- 聚类之K均值聚类和EM算法
这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...
- 100天搞定机器学习|day44 k均值聚类数学推导与python实现
[如何正确使用「K均值聚类」? 1.k均值聚类模型 给定样本,每个样本都是m为特征向量,模型目标是将n个样本分到k个不停的类或簇中,每个样本到其所属类的中心的距离最小,每个样本只能属于一个类.用C表示 ...
- 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...
- ML: 聚类算法-K均值聚类
基于划分方法聚类算法R包: K-均值聚类(K-means) stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...
- 【转】算法杂货铺——k均值聚类(K-means)
k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...
- 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例
k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...
- SciPy k均值聚类
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- Sklearn K均值聚类
## 版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Lear ...
- Python实现kMeans(k均值聚类)
Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...
随机推荐
- int和String的相互转化
int和String的相互转化 将int转化为String 通过valueof( )方法进行转化 int a=100;String num1=String.valueOf(a); Sys ...
- 使用kubeoperator安装的k8s集群以及采用的containerd容器运行时,关于采用的是cgroup 驱动还是systemd 驱动的说明
使用kubeoperator安装的k8s集群,默认使用的是systemd驱动 # kubectl get cm -n kube-system NAME DATA AGE calico-config 4 ...
- 《Hyperspectral Image Classification With Deep Feature Fusion Network》论文笔记
论文题目<Hyperspectral Image Classification With Deep Feature Fusion Network> 论文作者:Weiwei Song, Sh ...
- P1073 [NOIP2009 提高组] 最优贸易 (最短路spfa)
本题就是在一条1-n的路径上找p,q(先经过p),使得q-p最大. 考虑建正反图,正图上求出d[x],表示1-x的路径经过的节点最小值,反图上则从n开始求出f[x],x-n的最大值,最后枚举断点i,取 ...
- POJ3311 Hie with the Pie(状压DP,Tsp)
本题是经典的Tsp问题的变形,Tsp问题就是要求从起点出发经过每个节点一次再回到起点的距离最小值,本题的区别就是可以经过一个节点不止一次,那么先预处理出任意两点之间的最短距离就行了,因为再多走只会浪费 ...
- POJ2486 Apple Tree(树形背包)
从每个节点u出发后有两种情况:回到u和不回到u. dp数组设为三维,第一维是节点编号,第二维是从该节点开始走的步数,第三维1/0 表示是否回到该节点. 可以回到时:dp[u][j][1]=max(dp ...
- 洛谷P6033 [NOIP2004 提高组] 合并果子 加强版 (单调队列)
数据加强了,原来nlogn的复杂度就不行了...... 首先对原来的n个数排序(注意不能用快排),因为值域是1e5,所以可以开桶排序,开两个队列,一个存原来的n个数(已经满足单增),另一队列存两两合并 ...
- 论文解读(GLA)《Label-invariant Augmentation for Semi-Supervised Graph Classification》
论文信息 论文标题:Label-invariant Augmentation for Semi-Supervised Graph Classification论文作者:Han Yue, Chunhui ...
- settings.py 配置汇总
数据库配置: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', # 数据库引擎 'NAME': ' ', #数据库名称 ...
- Java多线程-线程关键字(二)
Java中和线程相关的关键字就两:volatile和synchronized. volatile以前用得较少,以后会用得更少(后面解释).它是一种非常轻量级的同步机制,它的三大特性是: 1.保证可见性 ...