Pandas高级操作

1、复杂查询

(1)逻辑运算

  • 以DataFrame其中一列进行逻辑计算,会产生一个对应的bool值组成的Series

  • 于是我们可以利用返回的bool列表进行一系列的数据查询

(2)逻辑筛选数据

  df[df['Q1'] == 8] # Q1 等于8
df[~(df['Q1'] == 8)] # 不等于8
  • 进行与或非的操作时,各个独立的逻辑表达式记得要加括号,不然报错
  • df['Q2']等价于df.Q2

(3)函数筛选

  df[lambda df: df['Q1'] == 8] # Q1为8的数据,返回dateframe
df.loc[lambda df: df.Q1 == 8, 'Q1':'Q2'] # Q1为8的, 显示 Q1 Q2
  • 表达式可以用lambda函数代替,默认传入的变量是其操作对象

(4)比较函数

  df.eq() # 等于相等 ==
df.ne() # 不等于 !=
df.le() # 小于等于 >=
df.lt() # 小于 <
df.ge() # 大于等于 >=
df.gt() # 大于 >
# 都支持 axis{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
df[df.Q1.ne(89)] # Q1 不等于8
df.loc[df.Q1.gt(90) & df.Q2.lt(90)] # and 关系 Q1>90 Q2<90 # isin,该方法返回一个bool列表
df[df.team.isin(['A','B'])] # 包含 AB 两组的
df[df.isin({'team': ['C', 'D'], 'Q1':[36,93]})] # 复杂查询,其他值为 NaN

(5)查询df.query

  df.query('Q1 > Q2 > 90') # 直接写类型 sql where 语句
df.query('Q1 + Q2 > 180')

(6)筛选df.filter

  df.filter(items=['Q1', 'Q2']) # 选择两列
df.filter(regex='Q', axis=1) # 列名包含Q的数据,返回dataframe
df.filter(regex='1$', axis=0) # 正则, 索引名包含1的
df.filter(like='2', axis=0) # 索引中有2的,返回dataframe
# 索引中2开头列名有Q的
df.filter(regex='^2', axis=0).filter(like='Q', axis=1)

(7)按数据类型查询

  df.select_dtypes(include=['float64']) # 选择 float64 型数据
df.select_dtypes(include='bool')
df.select_dtypes(include=['number']) # 只取数字型
df.select_dtypes(exclude=['int']) # 排除 int 类型

2、数据类型转换

(1)推断类型

  # 自动转换合适的数据类型
df.convert_dtypes() # 推荐!新的方法,支持 string 类型
df.infer_objects()

(2)指定类型pd.to_xxx()

  s = pd.to_numeric(s) # 转成数字
pd.to_datetime(m) # 转成时间
pd.to_timedelta(m) # 转成时差
pd.to_datetime(m, errors='coerce') # 错误处理
pd.to_numeric(m, errors='ignore')
pd.to_numeric(m errors='coerce').fillna(0) # 兜底填充
pd.to_datetime(df[['year', 'month', 'day']]) # 组合成日期

(3)类型转换 astype()

  df.dtypes # 查看数据类型
df.index.astype('int64') # 索引类型转换
df.astype('int32') # 所有数据转换为 int32
df.astype({'col1': 'int32'}) # 指定字段转指定类型

3、数据排序

(1)索引排序 sort_index()

  s.sort_index() # 升序排列
df.sort_index() # df 也是按索引进行排序
df.team.sort_index()
s.sort_index(ascending=False) # 降序排列
s.sort_index(inplace=True) # 排序后生效,改变原数据

(2)数值排序 df.reindex()

  • 指定自己定义顺序的索引,实现行和列的顺序重新定义:

(3)混合排序 sort_values()

  # df 按指定字段顺序
df.sort_values(by=['team'])
df.sort_values('Q1')
# 按多个字段,先排 team, 在同 team 内再看 Q1
df.sort_values(by=['team', 'Q1'])

Pandas复杂查询、数据类型转换、数据排序的更多相关文章

  1. JAVA学习(三):Java基础语法(变量、常量、数据类型、运算符与数据类型转换)

    Java基础语法(变量.常量.数据类型.运算符与数据类型转换) 1.变量 Java中.用户能够通过指定数据类型和标识符来声明变量.其基本的语法为: DataType identifier; 或 Dat ...

  2. 大数据学习----day27----hive02------1. 分桶表以及分桶抽样查询 2. 导出数据 3.Hive数据类型 4 逐行运算查询基本语法(group by用法,原理补充) 5.case when(练习题,多表关联)6 排序

    1. 分桶表以及分桶抽样查询 1.1 分桶表 对Hive(Inceptor)表分桶可以将表中记录按分桶键(某个字段对应的的值)的哈希值分散进多个文件中,这些小文件称为桶. 如要按照name属性分为3个 ...

  3. pandas练习(二)------ 数据过滤与排序

    数据过滤与排序------探索2012欧洲杯数据 相关数据见(github) 步骤1 - 导入pandas库 import pandas as pd 步骤2 - 数据集 path2 = ". ...

  4. pandas 数据类型转换

    数据处理过程的数据类型 当利用pandas进行数据处理的时候,经常会遇到数据类型的问题,当拿到数据的时候,首先需要确定拿到的是正确类型的数据,一般通过数据类型的转化,这篇文章就介绍pandas里面的数 ...

  5. python 实现元组中的的数据按照list排序, python查询mysql得到的数据是元组格式,按照list格式对他们排序

    需求: 需要用echart实现软件模块的统计分析,首先是对数据库的数据查询出来,然后给数据封装成列表(list)格式,数据传到前台,在echart实现绑定数据. 因为数据已经按照从大到小的顺序显示出来 ...

  6. SQL中数据类型转换

    CAST 和 CONVERT 将某种数据类型的表达式显式转换为另一种数据类型.CAST 和 CONVERT 提供相似的功能. 语法 使用 CAST: CAST ( expression AS data ...

  7. HQL语句中数据类型转换,及hibernate中createQuery执行hql报错

    一.HQL语句中数据类型转换: 我们需要从数据库中取出序号最大的记录,想到的方法就是使用order by子句进行排序(desc倒序),然后取出第一个对象,可是当初设计数据库时(我们是在原来的数据库的基 ...

  8. Sql Server函数全解<三>数据类型转换函数和文本图像函数

    阅读目录 一:数据类型转换函数 二:文本和图像函数 一:数据类型转换函数 在同时处理不同数据类型的值时,SQL Server一般会自动进行隐士类型转换.对于数据类型相近的值是有效的,比如int和flo ...

  9. Sql Server函数全解(三)数据类型转换函数和文本图像函数

    一:数据类型转换函数 在同时处理不同数据类型的值时,SQL Server一般会自动进行隐士类型转换.对于数据类型相近的值是有效的,比如int和float,但是对于其它数据类型,例如整型和字符类型,隐士 ...

随机推荐

  1. 微信小程序登录鉴权流程图

  2. 前端面试题整理——关于EventLoop(1)

    下面代码输出打印值顺序: async function async1(){ console.log('async1 start'); await async2(); console.log('asyn ...

  3. 安装PLSQLDeveloper

    1.点击.exe开始安装 2.选择安装路径点击下一步 3.点击finish 4.注册  ,打开新安装的plsql 如下: 点击关闭(现在是登录不上的) 点击help->Register 如下: ...

  4. 142. 环形链表 II

    做题思路 or 感想 : 1,这一题用快慢指针来判断是否有环,快慢指针同一起点,速度不同,如果有环,则必定会相遇 2,第二个有意思的点就是数论环节来弄出环入口了,真的太精妙了,但因为我表述能力不好,这 ...

  5. Mybatis实现多级菜单查询

    写在前面 最近实现一个小需求,前端需要菜单的信息,需要向后端发起获取菜单的请求,菜单又是一个多级菜单,后端我用的mybatis进行数据库查询,实现的方法我这里想到有两种,欢迎大家补充. 1. 在Men ...

  6. git远程建立仓库后,将本地项目推到远程报错 fatal: refusing to merge unrelated histories

    出现这个问题的最主要原因还是在于本地仓库和远程仓库实际上是独立的两个仓库,假如之前是直接clone的方式在本地仓库就不会有这个问题了. 解决方式是在命令后紧跟 --allow-unrelated-hi ...

  7. 无法连接linux虚拟机,ping不通

    尝试过多种方式,动态ip静态ip来回改,完了还是不好使,ping不通,请求不到主机. 如果使用桥接模式,当前虚拟机ip设置的和本地ip一样,会导致本地网络断开. 最后的解决方式是在vmware中,点击 ...

  8. Java学习day19

    今天学习了窗口监听.和鼠标监听 通过构建自己的输入框监听方法能够实现简单的加法计算器 明天学习Swing,做一个简单的基于鼠标点击操作的画板

  9. 移动端input解决键盘问题 方案1

    $('body').on('focusin', 'input, textarea', function(event) { if(navigator.userAgent.indexOf('Android ...

  10. ArcGIS使用技巧(二)——数据恢复

    新手,若有错误还请指正! ArcGIS工程文件中图层的数据源位置移动之后,会显示红叹号(图1),需要进行数据恢复,就体现出之前所说的勾选"Store relative pathnames t ...