codevs 1200 同余方程

2012年NOIP全国联赛提高组

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
题目描述 Description

求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解。

输入描述 Input Description

输入只有一行,包含两个正整数 a, b,用 一个 空格隔开。

输出描述 Output Description

输出只有一行包含一个正整数x0,即最小正整数解,输入数据保证一定有解。

样例输入 Sample Input

3 10

样例输出 Sample Output

7

数据范围及提示 Data Size & Hint

【数据范围】
对于 40%  的数据, 2 ≤b≤ 1,000 ;
对于 60% 的数据, 2 ≤b≤ 50,000,000 
对于 100%  的数据, 2 ≤a, b≤ 2,000,000,000

分类标签 Tags 点此展开

欧几里德定理 数论 大陆地区 NOIP全国联赛提高组 2012年
 /* ax ≡ 1 (mod b)就是ax=by+1,而且x,y都为整数,所以ax mod b==1,对于ax=by+1,用扩展gcd求解,再用找到合适的x输出即可*/
#include<iostream>
using namespace std;
#include<cstdio>
long long a,b;
void exgcd(long long a,long long b,long long &x,long long &y,long long &gcd)
{
if(b==)
{
gcd=a;x=;y=;
return;
}
exgcd(b,a%b,x,y,gcd);
int t=x;
x=y;
y=t-(a/b)*y;
}
int main()
{
cin>>a>>b;
long long gcd,x,y;
exgcd(a,b,x,y,gcd);
long long a0=a/gcd,b0=b/gcd;
long long k=/gcd;
x*=k;y*=k;
if(x<=)
{
int i=;
while()
{
if(a*(x+i*b0)+b*(y-i*a0)==)
{
if(x+i*b0>)
{
cout<<(x+i*b0)<<endl;
return ;
}
}
i++;
}
}
if(x>)
{
int i=-;
while()
{
if(a*(x+i*b0)+b*(y-i*a0)==)
{
if(x+i*b0<)
{
cout<<x<<endl;
return ;
}
}
i--;
}
}
return ;
}

扩展gcd codevs 1200 同余方程的更多相关文章

  1. [NOIP2012提高组] CODEVS 1200 同余方程(扩展欧几里德算法)

    数论题..所有数论对我来说都很恶心..不想再说什么了.. ------------------------------------------------ #include<iostream&g ...

  2. Codevs 1200 同余方程 2012年NOIP全国联赛提高组

    1200 同余方程 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 求关于 x 同余方程 a ...

  3. 扩展gcd codevs 1213 解的个数

    codevs 1213 解的个数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by ...

  4. codevs 1200 同余方程 (Extend_Eulid)

    /* 扩展欧几里得 ax%b==1 -> ax-by==1 求不定方程的一组解 使x为最小正整数解 */ #include<iostream> #include<cstdio& ...

  5. codevs 1200 同余方程 逆元

    题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空 ...

  6. codevs 1200 同余方程 2012年NOIP全国联赛提高组 x

    /*我在提交的时候发现了一个特别好玩的事,有兴趣的话,可以自己尝试一下:把下面说的地方的y=0改为y=1在codevs里面能够ac,这……数据水?到一定境界……厉害了,吓得我还以为自己对了,结果一讲才 ...

  7. 模板—扩展GCD*2

    有必要重新学一下扩展GCD emmmm. 主要是扩展GCD求解线性同余方程$ax≡b (mod p)$. 1.方程有解的充分必要条件:b%gcd(a,p)=0. 证明: $ax-py=b$ 由于求解整 ...

  8. UESTC 288 青蛙的约会 扩展GCD

    设两只青蛙跳了t步,则此时A的坐标:x+mt,B的坐标:y+nt.要使的他们在同一点,则要满足: x+mt - (y+nt) = kL (p是整数) 化成: (n-m)t + kL = x-y (L ...

  9. 详解扩展欧几里得算法(扩展GCD)

    浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经 ...

随机推荐

  1. 2、java语言基础

    1.关键字 被Java语言赋予特定含义的单词被称为关键字关键字都是小写的在Java开发工具中,针对关键字有特殊颜色的标记 2.标识符 Java标识符命名规则 ·标识符是由,数字,字母,下划线和美元符号 ...

  2. leetcode.C.4. Median of Two Sorted Arrays

    4. Median of Two Sorted Arrays 这应该是最简单最慢的方法了,因为本身为有序,所以比较后排序再得到中位数. double findMedianSortedArrays(in ...

  3. 一个爬取https和http通用的工具类(JDK自带的URL的用法)

    今天在java爬取天猫的时候因为ssl报错,所以从网上找了一个可以爬取https和http通用的工具类.但是有的时候此工具类爬到的数据不全,此处不得不说python爬虫很厉害. package cn. ...

  4. kernel编译速度提高

    1. 使用tmpfs来代替部分IO读写 2. ccache,可以将ccache的缓存文件设置在tmpfs上,但是这样的话,每次开机后,ccache的缓存文件会丢失 3.distcc,多机器编译 4.将 ...

  5. 64_p5

    php-nette-bootstrap-2.4.3-1.fc26.noarch.rpm 20-Feb-2017 07:19 16290 php-nette-caching-2.5.3-1.fc26.n ...

  6. http之100-continue

    [http之100-continue] 1.http 100-continue用于客户端在发送POST数据给服务器前,征询服务器情况,看服务器是否处理POST的数据,如果不处理,客户端则不上传POST ...

  7. 在C#中用MediaInfo获取视频或音频的属性

    MediaInfo是一个开源的获取视频或音频的信息的非常便利的工具,它本身就带有一个GUI界面,可以非常方便我们查看视频信息.但是,当我们写一些转码程序时,往往需要在程序中获取视频信息的时候. 以前我 ...

  8. 在浏览器中输入www.baidu.com后执行的全过程

    链接 http 请求过程——当我们在浏览器输入 www.baidu.com,然后回车之后的详解. 1)域名解析(域名 www.baidu.com变为 ip 地址). 1.浏览器搜索自己的DNS缓存(维 ...

  9. solr应用

    Solr是apache的顶级开源项目,它是使用java开发 ,基于lucene的全文检索服务器.Solr比lucene提供了更多的查询语句,而且它可扩展.可配置,同时它对lucene的性能进行了优化. ...

  10. python 面试

    知识总结 面试(一)