思路:

  利用快速排序的划分思想 可以找出前k大数,然后不断划分 直到找到第K大元素

代码:

#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
int findK(int left, int right, int arr[], int k) {
    if(left >= right) return arr[left];
    int first = left, last = right;
    int key = arr[first];
    while(first < last) {
        while(first < last && arr[last] >= key) last--;
        arr[first] = arr[last];
        while(first < last && arr[first] <= key) first++;
        arr[last] = arr[first];
    }
    arr[first] = key;
    if(first == k) return arr[k];
    else {
        if(first > k) return findK(left, first, arr, k);
        , right, arr, k);
    }
}
int main()
{
    int n;
    ];

    scanf("%d", &n);
    ; i <= n; i++) cin >>arr[i];
    int k;
    cin >> k;
    , n, arr, k);
    cout << num << endl;
    ;
}

查找无序数组中第K大的数的更多相关文章

  1. 无序数组中第K大的数

    1. 排序法 时间复杂度 O(nlogn) 2. 使用一个大小为K的数组arr保存前K个最大的元素 遍历原数组,遇到大于arr最小值的元素时候,使用插入排序方法,插入这个元素 时间复杂度,遍历是 O( ...

  2. 查找数组中第k大的数

    问题:  查找出一给定数组中第k大的数.例如[3,2,7,1,8,9,6,5,4],第1大的数是9,第2大的数是8-- 思考:1. 直接从大到小排序,排好序后,第k大的数就是arr[k-1]. 2. ...

  3. [经典算法题]寻找数组中第K大的数的方法总结

    [经典算法题]寻找数组中第K大的数的方法总结 责任编辑:admin 日期:2012-11-26   字体:[大 中 小] 打印复制链接我要评论   今天看算法分析是,看到一个这样的问题,就是在一堆数据 ...

  4. 无序数组中第Kth大的数

    题目:找出无序数组中第Kth大的数,如{63,45,33,21},第2大的数45. 输入: 第一行输入无序数组,第二行输入K值. 该是内推滴滴打车时(2017.8.26)的第二题,也是<剑指of ...

  5. 无序数组求第K大的数

    问题描述 无序数组求第K大的数,其中K从1开始算. 例如:[0,3,1,8,5,2]这个数组,第2大的数是5 OJ可参考:LeetCode_0215_KthLargestElementInAnArra ...

  6. 寻找数组中第K大的数

    给定一个数组A,要求找到数组A中第K大的数字.对于这个问题,解决方案有不少,此处我只给出三种: 方法1: 对数组A进行排序,然后遍历一遍就可以找到第K大的数字.该方法的时间复杂度为O(N*logN) ...

  7. 4. Median of Two Sorted Arrays *HARD* -- 查找两个排序数组的中位数(寻找两个排序数组中第k大的数)

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...

  8. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  9. 快速查找无序数组中的第K大数?

    1.题目分析: 查找无序数组中的第K大数,直观感觉便是先排好序再找到下标为K-1的元素,时间复杂度O(NlgN).在此,我们想探索是否存在时间复杂度 < O(NlgN),而且近似等于O(N)的高 ...

随机推荐

  1. 新式类 VS 经典类

    一.概述 Python中支持多继承,也就是一个子类可以继承多个父类/基类.当一个调用一个自身没有定义的属性时,它是按照何种顺序去父类中寻找的呢?尤其是当众多父类中都包含有同名的属性,这就涉及到新式类 ...

  2. [DeeplearningAI笔记]序列模型2.9情感分类

    5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.9 Sentiment classification 情感分类 情感分类任务简单来说是看一段文本,然后分辨这个人是否喜欢 ...

  3. cc1: warnings being treated as errors解决办法

    安装GDB时出现cc1: warnings being treated as errors Edit the Makefile and delete this line:WERROR_CFLAGS = ...

  4. DLL初试

    环境: VC++6.0 步骤: 1.建立一个WIN32 DYNAMIC-LINK LIBRARY工程,编写CPP文件,文件内容例如: #include "stdafx.h" #in ...

  5. 【CodeForces】870 F. Paths

    [题目]F. Paths [题意]给定数字n,图上有编号为1~n的点,两点当且仅当gcd(u,v)≠1时有连边,定义d(u,v)为两点间最短距离(若不连通则为0),求Σd(u,v),1<=u&l ...

  6. Linux下命令lrzsz

    lrzsz是什么 在使用Linux的过程中,难免少不了需要上传下载文件,比如往服务器上传一些war包之类的,之前都是使用winSCP,lrzsz是一个更方便的命令,可以直接在Linux中输入命令,弹出 ...

  7. vue.js devtools-------调试vue.js的开发者插件

    vue.js devtools插件: 作用: 以往我们在进行测试代码的时候,直接在console进行查看,其实这个插件雷同于控制台,只不过在vue里面,将需要查看的数据存放在一个变量里面了~ 效果图: ...

  8. Web攻防系列教程之 Cookie注入攻防实战

    摘要:随着网络安全技术的发展,SQL注入作为一种很流行的攻击方式被越来越多的人所知晓.很多网站也都对SQL注入做了防护,许多网站管理员的做法就是添加一个防注入程序.这时我们用常规的手段去探测网站的SQ ...

  9. 【shell】shell编程总结

    总结一下在写shell脚本时的常见注意事项: 1.shell脚本中的命令最好用命令的全路径,如果不知道全路径可以用which cmd查找命令的全路径. 2.shell脚本中定义环境变量用export ...

  10. 初识PDO数据库抽象层

    目录: 00x1 php中的pdo是什么? 00x2 pdo创建一个PDO对象 00x1 php中的pdo是什么? 就是操作数据库的方法,pdo就是把操作数据库的函数封装成一个pdo类,其间做了安全验 ...