LightOJ1171 Knights in Chessboard (II)(二分图最大点独立集)
题目
Source
http://www.lightoj.com/volume_showproblem.php?problem=1171
Description
Given an m x n chessboard where some of the cells are broken. Now you are about to place chess knights in the chessboard. You have to find the maximum number of knights that can be placed in the chessboard such that no two knights attack each other. You can't place knights in the broken cells.
Those who are not familiar with chess knights, note that a chess knight can attack eight positions in the board as shown in the picture below.
Input
Input starts with an integer T (≤ 125), denoting the number of test cases.
Each case starts with a blank line. The next line contains three integers m, n, K (1 ≤ m, n ≤ 200). Here m and n corresponds to the number of rows and the number of columns of the board respectively. Each of the next K lines will contain two integers x, y (1 ≤ x ≤ m, 1 ≤ y ≤ n) denoting that the cell(x, y) is broken already. No broken cell will be reported more than once.
Output
For each case of input, print the case number and the maximum number of knights that can be placed in the board considering the above restrictions.
Sample Input
2
8 8 0
2 5 4
1 3
1 4
2 3
2 4
Sample Output
Case 1: 32
Case 2: 6
分析
题目大概说一个n*m的国际象棋棋盘上有些格子不能放棋子,问最多能放几个骑士使得它们都不会处于互相攻击的状态。
棋盘黑白染色,形成二分图,然后就是二分图最大点独立集模型了,结果即为所有点数-二分图最大匹配。
代码
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 44444
#define MAXM 44444*22 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=0;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=0; edge[NE].flow=0;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-1,sizeof(level));
memset(gap,0,sizeof(gap));
level[vt]=0;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-1) continue;
level[v]=level[u]+1;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-1,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=0,aug=INF;
gap[0]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+1){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^1].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==0) break;
level[u]=minlevel+1;
gap[level[u]]++;
u=pre[u];
}
return flow;
} bool map[222][222];
int dx[]={1,1,-1,-1,2,2,-2,-2};
int dy[]={2,-2,2,-2,1,-1,1,-1};
int main(){
int t,n,m,k;
scanf("%d",&t);
for(int cse=1; cse<=t; ++cse){
scanf("%d%d%d",&n,&m,&k);
memset(map,0,sizeof(map));
int a,b,tot=n*m;
while(k--){
scanf("%d%d",&a,&b);
--a; --b;
map[a][b]=1;
}
for(int i=0; i<n; ++i){
for(int j=0; j<m; ++j){
if(map[i][j]) --tot;
}
}
vs=n*m; vt=vs+1; NV=vt+1; NE=0;
memset(head,-1,sizeof(head));
for(int i=0; i<n*m; ++i){
int x=i/m,y=i%m;
if(map[x][y]) continue;
if(x+y&1) addEdge(i,vt,1);
else{
addEdge(vs,i,1);
for(int j=0; j<8; ++j){
int nx=x+dx[j],ny=y+dy[j];
if(nx<0 || nx>=n || ny<0 || ny>=m || map[nx][ny]) continue;
addEdge(i,nx*m+ny,1);
}
}
}
printf("Case %d: %d\n",cse,tot-ISAP());
}
return 0;
}
LightOJ1171 Knights in Chessboard (II)(二分图最大点独立集)的更多相关文章
- POJ1466 Girls and Boys(二分图最大点独立集)
最大点独立集就是无向图中最多的两两不相邻的点集. 二分图最大点独立集=顶点数-二分图最大边独立集(二分图最大匹配) 这一题男女分别作YX部,如果x和y有浪漫关系则连边,如此构造二分图,答案显然就是最大 ...
- BZOJ 1143: [CTSC2008]祭祀river(二分图最大点独立集)
http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题意: 思路: 二分图最大点独立集,首先用floyd判断一下可达情况. #include< ...
- BZOJ 4808: 马(二分图最大点独立集)
http://www.lydsy.com/JudgeOnline/problem.php?id=4808 题意: 思路: 这图中的两个马只能选一个,二选一,很像二分图吧,对能互吃的两个棋子连线,在所选 ...
- 【bzoj4808】【马】二分图最大点独立集+简单感性证明
(上不了p站我要死了,侵权度娘背锅) Description 众所周知,马后炮是中国象棋中很厉害的一招必杀技."马走日字".本来,如果在要去的方向有别的棋子挡住(俗称"蹩 ...
- POJ 2771 Guardian of Decency (二分图最大点独立集)
Guardian of Decency Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 6133 Accepted: 25 ...
- HDU--3829--Cat VS Dog【最大点独立集】
链接:http://acm.hdu.edu.cn/showproblem.php?pid=3829 题意:动物园有n条狗.m头猫.p个小孩,每一个小孩有一个喜欢的动物和讨厌的动物.如今动物园要转移一些 ...
- 【POJ】1419:Graph Coloring【普通图最大点独立集】【最大团】
Graph Coloring Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5775 Accepted: 2678 ...
- hdu 3829 Cat VS Dog 二分图匹配 最大点独立集
Cat VS Dog Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others) Prob ...
- 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】
P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...
随机推荐
- WebUploader UEditor chrome 点击上传文件选择框会延迟几秒才会显示 反应很慢
chrome52.0.2743.80以上, accept: { title: 'Images', extensions: 'jpg,jpeg,png', mimeTypes: 'image/*' } ...
- Java学习笔记12
循环 打印一个字符串(例如: "Welcome to Java!") 100次,就需要吧下面的输出语句重复写100遍,这是相当繁琐的: System.out.println(&qu ...
- React.js入门笔记(续):用React的方式来思考
本文主要内容来自React官方文档中的"Thinking React"部分,总结算是又一篇笔记.主要介绍使用React开发组件的官方思路.代码内容经笔者改写为较熟悉的ES5语法. ...
- jquery实现简单瀑布流布局(续):图片懒加载
# jquery实现简单瀑布流布局(续):图片懒加载 这篇文章是jquery实现简单瀑布流布局思想的小小扩展.代码基于前作的代码继续完善. 图片懒加载就是符合某些条件时才触发图片的加载.最常见的具体表 ...
- Centos下安装jdk
下载 由于oracle官网下载jdk需要网站验证,所以不能使用wget直接下载. 一种比较快的方式是在本地下载tar.gz或者rpm,之后上传到Linux. tar.gz格式只需解压,放到指定目录下, ...
- Protecting against XML Entity Expansion attacks
https://blogs.msdn.microsoft.com/tomholl/2009/05/21/protecting-against-xml-entity-expansion-attacks/ ...
- github提交代码时,报permission denied publickey
在像github提交代码时,报permission denied publickey. 查找了一下,可能是因为github的key失效了. 按照以下步骤,重新生成key. ssh-keygen 一路默 ...
- Unity自动打包 apk
1.流程 Unity打包 apk,会把Unity安装目录下的默认 AndroidManifest.Xml 文件覆盖到apk中去,同时还会拷贝该文件所在目录下的其它默认设置文件,如 res 和 asse ...
- tyvj1087 sumsets
背景 广东汕头聿怀初中 Train#2 Problem1 描述 正整数N可以被表示成若干2的幂次之和.例如,N = 7时,共有下列6种不同的方案:1) 1+1+1+1+1+1+12) 1+1+ ...
- python操作mysql总结
Windows系统,python环境搭建. 下载并安装python2.7.11 https://www.python.org/downloads/ 下载并安装python的mysql包: http:/ ...