HDU-4521 小明系列问题——小明序列 间隔限制最长上升子序列
题意:给定一个长度为N的序列,现在要求给出一个最长的序列满足序列中的元素严格上升并且相邻两个数字的下标间隔要严格大于d。
分析:
1.线段树
由于给定的元素的取值范围为0-10^5,因此维护一棵线段树,其中[l, r]的信息表示处理完前k个数时,序列最大元素落在[l, r]区间
最长上升子序列的长度。从前往后处理给定的数组,处理到第 i 号元素时,更新第 i - d 号元素,这样就能够保证最长上升的序列间隔大于d,更新是需要更新到叶子节点的,但这里更新是单点更新,每次更新的位置是该元素的值,信息就是到该点的最长上升长度。
其实仔细分析可以发现这个解法其实是经典的O(n^2)的算法的改进,那个算法需要遍历之前的更新信息比较相对大小,因此也不能简单的维护前缀最值,而线段树由于节点是值信息,查询的时候就不要去检验之前大小关系,加之线段树有能够动态区间求解各种信息,时间复杂度就这么被降下来了。当然如果取值范围较大,只要N不大还能够离散化。
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define lch (p<<1)
#define rch (p<<1|1)
using namespace std; const int N = ;
int n, d;
int seq[N];
int alen[N]; struct Node {
int l, r;
int len;
}e[N*]; void build(int p, int l, int r) {
e[p].l = l, e[p].r = r, e[p].len = ;
if (l != r) {
int mid = (l + r) >> ;
build(lch, l, mid), build(rch, mid+, r);
}
} void push_up(int p) {
e[p].len = max(e[lch].len, e[rch].len);
} void modify(int p, int x, int val) {
if (e[p].l == e[p].r) e[p].len = max(e[p].len, val);
else {
int mid = (e[p].l + e[p].r) >> ;
if (x <= mid) modify(lch, x, val);
else modify(rch, x, val);
push_up(p);
}
} int query(int p, int l, int r) {
if (e[p].l == l && e[p].r == r) return e[p].len;
else {
int mid = (e[p].l + e[p].r) >> ;
if (r <= mid) return query(lch, l, r);
else if (l > mid) return query(rch, l, r);
else return max(query(lch, l, mid), query(rch, mid+, r));
}
} int main() {
while (scanf("%d %d", &n, &d) != EOF) {
build(, , ); // 建立0-10^5的线段树
int ret = ;
for (int i = ; i <= n; ++i) {
scanf("%d", &seq[i]);
if (seq[i] > ) ret = max(ret, alen[i]=query(, , seq[i]-)+);
else ret = max(ret, alen[i] = );
if (i-d>=) modify(, seq[i-d], alen[i-d]);
}
printf("%d\n", ret);
}
return ;
}
2.经典O(nlogn)LIS变种
经典的算法在数组中保留都是下标节点比当前点小的节点,因为从前往后处理也因为经典的算法其实处理的是间隔d=0的特殊情况,那么稍微进行一下推广,当我们处理完第 i 个元素只是把第 i - d 号元素放到数组中,放入的位置就是以前求出来的最长上升子序列长度,当然放入的时候要比较一下是否需要替换。
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std; const int N = ;
int n, d;
int seq[N];
int alen[N]; void solve() {
vector<int>vt;
vector<int>::iterator it;
int ret = ;
for (int i = ; i <= n; ++i) {
it = lower_bound(vt.begin(), vt.end(), seq[i]);
if (it == vt.end()) alen[i] = vt.size()+;
else alen[i] = it-vt.begin()+;
if (i-d >= ) {
if (vt.size() == alen[i-d]-) vt.push_back(seq[i-d]);
else if (vt[alen[i-d]-] > seq[i-d]) vt[alen[i-d]-] = seq[i-d];
}
ret = max(ret, alen[i]);
}
printf("%d\n", ret);
} int main() {
while (scanf("%d %d", &n, &d) != EOF) {
for (int i = ; i <= n; ++i) {
scanf("%d", &seq[i]);
}
solve();
}
return ;
}
HDU-4521 小明系列问题——小明序列 间隔限制最长上升子序列的更多相关文章
- hdu 4521 小明系列问题——小明序列 线段树+二分
小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Pro ...
- hdu 4521 小明系列问题——小明序列(线段树+DP或扩展成经典的LIS)
小明系列问题--小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Tot ...
- 小明系列问题――小明序列(LIS)
小明系列问题――小明序列 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit ...
- hdu----(4521)小明系列问题——小明序列
小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tota ...
- 小明系列问题——小明序列(Lis 相距大于d的单调上升子序列)
小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Tot ...
- 2018.07.08 hdu4521 小明系列问题——小明序列(线段树+简单dp)
小明系列问题--小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Proble ...
- HDU 4521 小明系列问题——小明序列 (线段树 单点更新)
题目连接 Problem Description 大家都知道小明最喜欢研究跟序列有关的问题了,可是也就因为这样,小明几乎已经玩遍各种序列问题了.可怜的小明苦苦地在各大网站上寻找着新的序列问题,可是找来 ...
- hdu 4521 小明系列问题——小明序列(线段树 or DP)
题目链接:hdu 4521 本是 dp 的变形,却能用线段树,感觉好强大. 由于 n 有 10^5,用普通的 dp,算法时间复杂度为 O(n2),肯定会超时.所以用线段树进行优化.线段树维护的是区间内 ...
- HDU 4521 小明系列问题——小明序列 (线段树维护DP)
题目地址:HDU 4521 基本思路是DP.找前面数的最大值时能够用线段树来维护节省时间. 因为间隔要大于d. 所以能够用一个队列来延迟更新,来保证每次询问到的都是d个之前的. 代码例如以下: #in ...
随机推荐
- 使用PowerDesigner生成Access数据库
PowerDesigner生成Access数据库 自从使用PD以来一直知道可以支持access但一直没有搞明白如何通过脚本来创建access数据表.在PD的tools里终于找到的答案,具体 文件都在C ...
- greenplum如何激活,同步,删除standby和恢复原始master
在Master失效时,同步程序会停止,Standby可以被在本机被激活,激活Standby时,同步日志被用来恢复Master最后一次事务成功提交时的状态.在激活Standby时还可以指定一个新的Sta ...
- java 面试每日一题
题目:一球从100米高度自由落下,每次落地后反跳回原高度的一半:再落下,求它在 第10次落地时,共经过多少米?第10次反弹多高? import java.util.Scanner; public cl ...
- java当中的定时器的几种使用方式
这几天做的项目有个功能,就是定时执行一项服务,以下几种方法比较高效.不说了 直接撸代码: import java.util.Calendar; import java.util.Date; impo ...
- c#sqlhelper之用法
MySqlParameter[] a=new MySqlParameter[]{new MySqlParameter("@stu_id",stu_id)}; 参数使用
- Django的第一个web程序及深入学习
本学习历程参照Practical Django Projects和http://djangobook.py3k.cn上翻译的内容进行 注:本例以本机加以说明: 根据Django的安装过程可知:在命令行 ...
- 链接注入(便于跨站请求伪造)(AppScan扫描结果)
最近工作要求解决下web的项目的漏洞问题,扫描漏洞是用的AppScan工具,其中此篇文章是关于链接注入问题的.下面就把这块东西分享出来. 原创文章,转载请注明 -------------------- ...
- 20150604_Andriod 窗体PopupWindow动画
参考地址: http://www.open-open.com/lib/view/open1378720752084.html http://www.jcodecraeer.com/a/anzhuoka ...
- csharp通过dll调用opencv函数,图片作为参数
[blog 项目实战派]csharp通过dll调用opencv函数,图片作为参数 一直想做着方面的研究,但是因为这个方面的知识过于小众,也是由于自己找资料的能力比较弱,知道今天才找 ...
- asp.net学习资料,mvc学习资料
http://www.asp.net/mvc/tutorials/getting-started-with-aspnet-mvc3/cs/adding-validation-to-the-model