Destroying The Graph
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8158   Accepted: 2620   Special Judge

Description

Alice and Bob play the following game. First, Alice draws some directed graph with N vertices and M arcs. After that Bob tries to destroy it. In a move he may take any vertex of the graph and remove either all arcs incoming into this vertex, or all arcs outgoing from this vertex.
Alice assigns two costs to each vertex: Wi+ and Wi-. If Bob removes all arcs incoming into the i-th vertex he pays Wi+ dollars to Alice, and if he removes outgoing arcs he pays Wi- dollars.

Find out what minimal sum Bob needs to remove all arcs from the graph.

Input

Input
file describes the graph Alice has drawn. The first line of the input
file contains N and M (1 <= N <= 100, 1 <= M <= 5000). The
second line contains N integer numbers specifying Wi+. The third line defines Wi- in a similar way. All costs are positive and do not exceed 106
. Each of the following M lines contains two integers describing the
corresponding arc of the graph. Graph may contain loops and parallel
arcs.

Output

On
the first line of the output file print W --- the minimal sum Bob must
have to remove all arcs from the graph. On the second line print K ---
the number of moves Bob needs to do it. After that print K lines that
describe Bob's moves. Each line must first contain the number of the
vertex and then '+' or '-' character, separated by one space. Character
'+' means that Bob removes all arcs incoming into the specified vertex
and '-' that Bob removes all arcs outgoing from the specified vertex.

Sample Input

3 6
1 2 3
4 2 1
1 2
1 1
3 2
1 2
3 1
2 3

Sample Output

5
3
1 +
2 -
2 +
【分析】首先得拆点,一个点拆成in和out。很明显就是求最小点权覆盖集。最小点权覆盖集的求解可以借鉴二分图匹配的最大流解法。
再加上额外的源点S和汇点T后,将匹配以一条s-u-v-t形式的流路径串联起来。匹配的限制在顶点上,恰当的利用了流的容量限制。
而点覆盖集的限制在边上,最小割是最大流的对偶问题,对偶往往是将问题的性质从顶点转边,从边转顶点。可以尝试转最小割模型。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <queue>
#include <vector>
#define inf 0x7fffffff
#define met(a,b) memset(a,b,sizeof a)
typedef long long ll;
using namespace std;
const int N = ;
const int M = ;
int read() {int x=,f=;char c=getchar();while(c<''||c>'') {if(c=='-')f=-;c=getchar();}while(c>=''&&c<='') {x=x*+c-'';c=getchar();}return x*f;}
int n,m,cnt;
int win[N],wout[N];
bool flag;
int toto=;
struct Dinic {
int s,t;
struct Edge {
int nxt,to,cap,flow;
} edg[M];
bool vv[N];
bool vis[N];
int d[N];
int h[N];
int cur[N];
void init() {
met(h,-);
}
void AddEdge(int x,int y,int z) {
edg[toto].to=y;
edg[toto].nxt=h[x];
edg[toto].cap=z;
h[x]=toto++;
edg[toto].to=x;
edg[toto].nxt=h[y];
h[y]=toto++;
}
bool BFS() {
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = h[x]; i!=-; i=edg[i].nxt) {
int v=edg[i].to;
if (!vis[v] && edg[i].cap > edg[i].flow) {
vis[v]=;
d[v] = d[x]+;
q.push(v);
if(flag)vv[v]=true;
}
}
}
return vis[t];
} int DFS(int x,int a) {
if (x==t || a==)
return a;
int flow = ,f;
for(int &i=cur[x]; i!=-; i=edg[i].nxt) {
int v=edg[i].to;
if (d[x]+ == d[v] && (f=DFS(v,min(a,edg[i].cap-edg[i].flow)))>) {
edg[i].flow+=f;
edg[i^].flow-=f;
flow+=f;
a-=f;
if (a==)
break;
}
}
return flow;
} int Maxflow(int s,int t) {
this->s=s;
this->t=t;
int flow = ;
while (BFS()) {
for(int i=; i<=t; i++)cur[i]=h[i];
flow+=DFS(s,inf);
}
return flow;
} } dc; int main() {
while (~scanf("%d%d",&n,&m)) {
dc.init();
met(wout,);
met(win,);
flag=false;
for(int i=; i<=n; i++)win[i]=read();
for(int i=; i<=n; i++)wout[i]=read();
while(m--) {
int u=read();
int v=read();
dc.AddEdge(u,v+n,inf);
}
for(int i=; i<=n; i++) {
dc.AddEdge(,i,wout[i]);
dc.AddEdge(i+n,*n+,win[i]);
}
printf("%d\n",dc.Maxflow(,*n+));
int sum=;
flag=true;
dc.BFS();
for(int i=; i<=n; i++) {
if(!dc.vv[i])sum++;
if(dc.vv[n+i])sum++;
}
printf("%d\n",sum);
for(int i=; i<=n; i++) {
if(!dc.vv[i])printf("%d -\n",i);
if(dc.vv[n+i])printf("%d +\n",i);
}
}
return ;
}

POJ2125 Destroying The Graph (最小点权覆盖集)(网络流最小割)的更多相关文章

  1. POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)

    题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...

  2. 最小点权覆盖集&最大点权独立集

    最小点权覆盖集 二分图最小点权覆盖集解决的是这样一个问题: 在二分图中,对于每条边,两个端点至少选一个,求所选取的点最小权值和. 方法: 1.先对图二分染色,对于每条边两端点的颜色不同 2.然后建立源 ...

  3. POJ2125 Destroying The Graph(二分图最小点权覆盖集)

    最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量 ...

  4. HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]

    嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...

  5. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  6. POJ 2125 最小点权覆盖集(输出方案)

    题意:给一个图(有自回路,重边),要去掉所有边,规则:对某个点,可以有2种操作:去掉进入该点 的所有边,也可以去掉出该点所有边,(第一种代价为w+,第二种代价为w-).求最小代价去除所有边. 己思:点 ...

  7. poj2125 最小点权覆盖集

    题意:有一张图,对于每个点,有出边和入边,现在目的是删除改图的所有边,对于每个点,删除出边的花费Wi-,删除入边的花费Wi+,现在的目的求删去所有边后的花费最小. 建图方法:对于每个点i,拆点为i,i ...

  8. HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]

    题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...

  9. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

随机推荐

  1. ByteArray

    ByteArray:属性endian:String == Endian.BIG_ENDIAN/Endian.LITTLE_ENDIAN.length:uint ByteArray的字节数positio ...

  2. SQL中 char、varchar、text 和 nchar、nvarchar、ntext的区别

    1.char.char存储定长数据很方便,char字段上的索引效率级高,比如定义char(10),那么不论你存储的数据是否达到了10个字节,都要占去10个字节的空间.             2.va ...

  3. 元素ID命名规范

    因为本框架默认所有内容都位于一个Document中,所以为元素命名为ID的时候需要做到唯一性,如果确实不可避免的会出现有重读ID的现象,需要操作当前页片(页面片段,就是子页面)的时候,尽量用: $.C ...

  4. Java 多线程间的通讯

    在前一小节,介绍了在多线程编程中使用同步机制的重要性,并学会了如何实现同步的方法来正确地访问共享资源.这些线程之间的关系是平等的,彼此之间并不存在任何依赖,它们各自竞争CPU资源,互不相让,并且还无条 ...

  5. python几大排序算法

    1.插入排序 原理:有数列[k1,k2,k3...],假设k1是排好序的,插入k2,排序完成,然后再插入k3,以此类推 def insert_sort(arr): for i in range(1,l ...

  6. MySQL校对规则(三)

    校对规则:在当前编码下,字符之间的比较顺序是什么? ci:不区分大小写,Cs区分大小写, _bin 编码比较 每个字符集都支持不定数量的校对规则,可以通过如下指令: show collation 可以 ...

  7. Cocoa Drawing

    Graphics Contexts Graphics contexts are a fundamental part of the drawing infrastructure in Cocoa ap ...

  8. hdoj-2023

    #include "stdio.h"int main(){ int a[55][6]; double pingjun[55],mk[6]; int n,m,i,j,sum=0,co ...

  9. ELF Spec

    ELF Spec Generic System V Application Binary Interface,ELF-64 Object File Format AMD64 System V ABI, ...

  10. 算法----Magic Index

    给定一个数组 A,如果 某个下标 i, 满足 A[i] = i, 则 i 称为 Magic Index. 现在假设 A 中的元素是递增有序的.且不重复,找出 Magic Index. 更进一步,当数组 ...