Destroying The Graph
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8158   Accepted: 2620   Special Judge

Description

Alice and Bob play the following game. First, Alice draws some directed graph with N vertices and M arcs. After that Bob tries to destroy it. In a move he may take any vertex of the graph and remove either all arcs incoming into this vertex, or all arcs outgoing from this vertex.
Alice assigns two costs to each vertex: Wi+ and Wi-. If Bob removes all arcs incoming into the i-th vertex he pays Wi+ dollars to Alice, and if he removes outgoing arcs he pays Wi- dollars.

Find out what minimal sum Bob needs to remove all arcs from the graph.

Input

Input
file describes the graph Alice has drawn. The first line of the input
file contains N and M (1 <= N <= 100, 1 <= M <= 5000). The
second line contains N integer numbers specifying Wi+. The third line defines Wi- in a similar way. All costs are positive and do not exceed 106
. Each of the following M lines contains two integers describing the
corresponding arc of the graph. Graph may contain loops and parallel
arcs.

Output

On
the first line of the output file print W --- the minimal sum Bob must
have to remove all arcs from the graph. On the second line print K ---
the number of moves Bob needs to do it. After that print K lines that
describe Bob's moves. Each line must first contain the number of the
vertex and then '+' or '-' character, separated by one space. Character
'+' means that Bob removes all arcs incoming into the specified vertex
and '-' that Bob removes all arcs outgoing from the specified vertex.

Sample Input

3 6
1 2 3
4 2 1
1 2
1 1
3 2
1 2
3 1
2 3

Sample Output

5
3
1 +
2 -
2 +
【分析】首先得拆点,一个点拆成in和out。很明显就是求最小点权覆盖集。最小点权覆盖集的求解可以借鉴二分图匹配的最大流解法。
再加上额外的源点S和汇点T后,将匹配以一条s-u-v-t形式的流路径串联起来。匹配的限制在顶点上,恰当的利用了流的容量限制。
而点覆盖集的限制在边上,最小割是最大流的对偶问题,对偶往往是将问题的性质从顶点转边,从边转顶点。可以尝试转最小割模型。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <queue>
#include <vector>
#define inf 0x7fffffff
#define met(a,b) memset(a,b,sizeof a)
typedef long long ll;
using namespace std;
const int N = ;
const int M = ;
int read() {int x=,f=;char c=getchar();while(c<''||c>'') {if(c=='-')f=-;c=getchar();}while(c>=''&&c<='') {x=x*+c-'';c=getchar();}return x*f;}
int n,m,cnt;
int win[N],wout[N];
bool flag;
int toto=;
struct Dinic {
int s,t;
struct Edge {
int nxt,to,cap,flow;
} edg[M];
bool vv[N];
bool vis[N];
int d[N];
int h[N];
int cur[N];
void init() {
met(h,-);
}
void AddEdge(int x,int y,int z) {
edg[toto].to=y;
edg[toto].nxt=h[x];
edg[toto].cap=z;
h[x]=toto++;
edg[toto].to=x;
edg[toto].nxt=h[y];
h[y]=toto++;
}
bool BFS() {
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = h[x]; i!=-; i=edg[i].nxt) {
int v=edg[i].to;
if (!vis[v] && edg[i].cap > edg[i].flow) {
vis[v]=;
d[v] = d[x]+;
q.push(v);
if(flag)vv[v]=true;
}
}
}
return vis[t];
} int DFS(int x,int a) {
if (x==t || a==)
return a;
int flow = ,f;
for(int &i=cur[x]; i!=-; i=edg[i].nxt) {
int v=edg[i].to;
if (d[x]+ == d[v] && (f=DFS(v,min(a,edg[i].cap-edg[i].flow)))>) {
edg[i].flow+=f;
edg[i^].flow-=f;
flow+=f;
a-=f;
if (a==)
break;
}
}
return flow;
} int Maxflow(int s,int t) {
this->s=s;
this->t=t;
int flow = ;
while (BFS()) {
for(int i=; i<=t; i++)cur[i]=h[i];
flow+=DFS(s,inf);
}
return flow;
} } dc; int main() {
while (~scanf("%d%d",&n,&m)) {
dc.init();
met(wout,);
met(win,);
flag=false;
for(int i=; i<=n; i++)win[i]=read();
for(int i=; i<=n; i++)wout[i]=read();
while(m--) {
int u=read();
int v=read();
dc.AddEdge(u,v+n,inf);
}
for(int i=; i<=n; i++) {
dc.AddEdge(,i,wout[i]);
dc.AddEdge(i+n,*n+,win[i]);
}
printf("%d\n",dc.Maxflow(,*n+));
int sum=;
flag=true;
dc.BFS();
for(int i=; i<=n; i++) {
if(!dc.vv[i])sum++;
if(dc.vv[n+i])sum++;
}
printf("%d\n",sum);
for(int i=; i<=n; i++) {
if(!dc.vv[i])printf("%d -\n",i);
if(dc.vv[n+i])printf("%d +\n",i);
}
}
return ;
}

POJ2125 Destroying The Graph (最小点权覆盖集)(网络流最小割)的更多相关文章

  1. POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)

    题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...

  2. 最小点权覆盖集&最大点权独立集

    最小点权覆盖集 二分图最小点权覆盖集解决的是这样一个问题: 在二分图中,对于每条边,两个端点至少选一个,求所选取的点最小权值和. 方法: 1.先对图二分染色,对于每条边两端点的颜色不同 2.然后建立源 ...

  3. POJ2125 Destroying The Graph(二分图最小点权覆盖集)

    最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量 ...

  4. HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]

    嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...

  5. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  6. POJ 2125 最小点权覆盖集(输出方案)

    题意:给一个图(有自回路,重边),要去掉所有边,规则:对某个点,可以有2种操作:去掉进入该点 的所有边,也可以去掉出该点所有边,(第一种代价为w+,第二种代价为w-).求最小代价去除所有边. 己思:点 ...

  7. poj2125 最小点权覆盖集

    题意:有一张图,对于每个点,有出边和入边,现在目的是删除改图的所有边,对于每个点,删除出边的花费Wi-,删除入边的花费Wi+,现在的目的求删去所有边后的花费最小. 建图方法:对于每个点i,拆点为i,i ...

  8. HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]

    题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...

  9. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

随机推荐

  1. C++质因式分解

    分解质因数是将一个数差分成为几个质数相乘,本函数n初始取2 void prim(int m, int n) { if (m > n) { while (m%n) n++; m/=n; prim( ...

  2. 黑马程序员——C语言基础语法 关键字 标识符 注释 数据及数据类型

    Java培训.Android培训.iOS培训..Net培训.期待与您交流! (一下内容是对黑马苹果入学视频的个人知识点总结) (一)C语言简单介绍 (1)C语言程序是由函数组成的任何C语言程序都是由一 ...

  3. 【转】Centos系统文件与用户权限分配详解ftp,nginx,php

    linux系统中权限是非常完善的一个功能了,我们如果设置不正确文件就无法使用了,像我们以一般情况需要把文件权限设置为777或644了,对于用户权 限就更加了,像素ftp,nginx,php这些我们都可 ...

  4. CentOS 6.4 U盘启动问题的解决

    替换syslinux/目录下的vesamenu.c32文件. 下载地址: http://pan.baidu.com/s/1mg8xce8

  5. ios 8+ (xcode 6.0 +)应用程序Ad Hoc 发布前多设备测试流程详解

    我们开发的程序在经过simulator以及自己的iOS设备测试后,也基本完成应用程序了,这时候我们就可以把它发布出去了更更多的人去测试,我们可以在iOS平台使用ad hoc实现. 你在苹果购买的开发者 ...

  6. 2013年8月份第4周51Aspx源码发布详情

    迷你桌面闹钟源码  2013-8-27 [VS2010]功能介绍:实现了定时闹钟的功能,可以设置闹钟最前端显示.感兴趣的可以下载学习. BR个人博客系统(课程设计)源码  2013-8-27 [VS2 ...

  7. stm32的软件架构问题

    1. 架构组成:程序代码分为四种结构a) 顺序执行代码定义:按照顺序逐行执行的代码优点:是思路简单,代码可靠不易被干扰.缺点:占用资源用途:只用来各种变量.函数的定义,硬件的初始化程序位置:main. ...

  8. ios中摄像头/相册获取图片,压缩图片,上传服务器方法总结

    相册 iphone的相册包含摄像头胶卷+用户计算机同步的部分照片.用户可以通过UIImagePickerController类提供的交互对话框来从相册中选择图像.但是,注意:相册中的图片机器路径无法直 ...

  9. php大力力 [017节]来来来,庆祝一下🎁大力力第一个数据库录入程序完成!

    庆祝一下

  10. 【LeetCode OJ】Linked List Cycle

    Problem link: http://oj.leetcode.com/problems/linked-list-cycle/ We set two pointers: the faster poi ...