使用netlink之前,先参考一下资料:http://www.ibm.com/developerworks/cn/linux/l-connector/

netlink通信机制介绍:资料来源 linux-4.8.13/Documentation/connector/connector.txt 2016-12-10 21:31:04

/*****************************************/
Kernel Connector.
/*****************************************/

Kernel connector - new netlink based userspace <-> kernel space easy
to use communication module.

The Connector driver makes it easy to connect various agents using a
netlink based network.  One must register a callback and an identifier.
When the driver receives a special netlink message with the appropriate
identifier, the appropriate callback will be called.

From the userspace point of view it's quite straightforward:

    socket();
    bind();
    send();
    recv();

用户空间使用netlink相对简单一些。

But if kernelspace wants to use the full power of such connections, the
driver writer must create special sockets, must know about struct sk_buff
handling, etc...  The Connector driver allows any kernelspace agents to use
netlink based networking for inter-process communication in a significantly
easier way:

int cn_add_callback(struct cb_id *id, char *name, void (*callback) (struct cn_msg *, struct netlink_skb_parms *));
void cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __group, int gfp_mask);
void cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __group, int gfp_mask);

struct cb_id
{
    __u32            idx;
    __u32            val;
};

idx and val are unique identifiers which must be registered in the
connector.h header for in-kernel usage.  void (*callback) (void *) is a
callback function which will be called when a message with above idx.val
is received by the connector core.  The argument for that function must
be dereferenced to struct cn_msg *.

struct cn_msg
{
    struct cb_id        id;

    __u32            seq;
    __u32            ack;

    __u32            len;        /* Length of the following data */
    __u8            data[0];
};

/*****************************************/
Connector interfaces.
/*****************************************/
注:

cn应该是connector的缩写

cb:call back

int cn_add_callback(struct cb_id *id, char *name, void (*callback) (struct cn_msg *, struct netlink_skb_parms *));

 Registers new callback with connector core.

 struct cb_id *id        - unique connector's user identifier.
                  It must be registered in connector.h for legal in-kernel users.
 char *name            - connector's callback symbolic name.
 void (*callback) (struct cn..)    - connector's callback.
                  cn_msg and the sender's credentials

void cn_del_callback(struct cb_id *id);

 Unregisters new callback with connector core.

 struct cb_id *id        - unique connector's user identifier.

int cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __groups, int gfp_mask);
int cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __groups, int gfp_mask);

 Sends message to the specified groups.  It can be safely called from
 softirq context, but may silently fail under strong memory pressure.
 If there are no listeners for given group -ESRCH can be returned.

 struct cn_msg *        - message header(with attached data).
 u16 len            - for *_multi multiple cn_msg messages can be sent
 u32 port            - destination port.
                   If non-zero the message will be sent to the
                  given port, which should be set to the
                  original sender.
 u32 __group            - destination group.
                  If port and __group is zero, then appropriate group will
                  be searched through all registered connector users,
                  and message will be delivered to the group which was
                  created for user with the same ID as in msg.
                  If __group is not zero, then message will be delivered
                  to the specified group.
 int gfp_mask            - GFP mask.

 Note: When registering new callback user, connector core assigns
 netlink group to the user which is equal to its id.idx.

/*****************************************/
Protocol description.
/*****************************************/

The current framework offers a transport layer with fixed headers.  The
recommended protocol which uses such a header is as following:

msg->seq and msg->ack are used to determine message genealogy.  When
someone sends a message, they use a locally unique sequence and random
acknowledge number.  The sequence number may be copied into
nlmsghdr->nlmsg_seq too.

The sequence number is incremented with each message sent.

If you expect a reply to the message, then the sequence number in the
received message MUST be the same as in the original message, and the
acknowledge number MUST be the same + 1.

If we receive a message and its sequence number is not equal to one we
are expecting, then it is a new message.  If we receive a message and
its sequence number is the same as one we are expecting, but its
acknowledge is not equal to the sequence number in the original
message + 1, then it is a new message.

Obviously, the protocol header contains the above id.

The connector allows event notification in the following form: kernel
driver or userspace process can ask connector to notify it when
selected ids will be turned on or off (registered or unregistered its
callback).  It is done by sending a special command to the connector
driver (it also registers itself with id={-1, -1}).

内核自身提供了示例程序cn_test.c
As example of this usage can be found in the cn_test.c module which
uses the connector to request notification and to send messages.

/*****************************************/
Reliability.
/*****************************************/

Netlink itself is not a reliable protocol.  That means that messages can
be lost due to memory pressure or process' receiving queue overflowed,
so caller is warned that it must be prepared.  That is why the struct
cn_msg [main connector's message header] contains u32 seq and u32 ack
fields.

/*****************************************/
Userspace usage.
/*****************************************/

2.6.14 has a new netlink socket implementation, which by default does not
allow people to send data to netlink groups other than 1.
So, if you wish to use a netlink socket (for example using connector)
with a different group number, the userspace application must subscribe to
that group first.  It can be achieved by the following pseudocode:

s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);

l_local.nl_family = AF_NETLINK;
l_local.nl_groups = 12345;
l_local.nl_pid = 0;

if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) {
    perror("bind");
    close(s);
    return -1;
}

{
    int on = l_local.nl_groups;
    setsockopt(s, 270, 1, &on, sizeof(on));
}

Where 270 above is SOL_NETLINK, and 1 is a NETLINK_ADD_MEMBERSHIP socket
option.  To drop a multicast subscription, one should call the above socket
option with the NETLINK_DROP_MEMBERSHIP parameter which is defined as 0.

2.6.14 netlink code only allows to select a group which is less or equal to
the maximum group number, which is used at netlink_kernel_create() time.
In case of connector it is CN_NETLINK_USERS + 0xf, so if you want to use
group number 12345, you must increment CN_NETLINK_USERS to that number.
Additional 0xf numbers are allocated to be used by non-in-kernel users.

Due to this limitation, group 0xffffffff does not work now, so one can
not use add/remove connector's group notifications, but as far as I know,
only cn_test.c test module used it.

Some work in netlink area is still being done, so things can be changed in
2.6.15 timeframe, if it will happen, documentation will be updated for that
kernel.

/*****************************************/
Code samples
/*****************************************/

Sample code for a connector test module and user space can be found
in samples/connector/. To build this code, enable CONFIG_CONNECTOR
and CONFIG_SAMPLES.

1、netlink 连接器 通信机制的更多相关文章

  1. linux netlink通信机制

    一.什么是Netlink通信机制  Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,也是网络应用程序与内核通信的最常用的接口. Netlink 是一种特殊的 s ...

  2. Netlink通信机制【转】

    本文转载自:http://www.cnblogs.com/wenqiang/p/6306727.html 一.什么是Netlink通信机制  Netlink套接字是用以实现用户进程与内核进程通信的一种 ...

  3. linux netlink通信机制简介

    一.什么是Netlink通信机制  Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,也是网络应用程序与内核通信的最常用的接口. Netlink 是一种特殊的 s ...

  4. netlink---Linux下基于socket的内核和上层通信机制 (转)

    需要在linux网卡 驱动中加入一个自己的驱动,实现在内核态完成一些报文处理(这个过程可以实现一种零COPY的网络报文截获),对于复杂报文COPY下必要的数据交给用户 态来完成(因为过于复杂的报文消耗 ...

  5. .Net中Remoting通信机制简单实例

    .Net中Remoting通信机制 前言: 本程序例子实现一个简单的Remoting通信案例 本程序采用语言:c# 编译工具:vs2013工程文件 编译环境:.net 4.0 程序模块: Test测试 ...

  6. .Net中Remoting通信机制

    Remoting通信机制 Remoting介绍 主要元素 通道类型 激活方式 对象定义 Remoting介绍 什么是Remoting,简而言之,我们可以将其看作是一种分布式处理方式. 从微软的产品角度 ...

  7. 【单页应用之通信机制】view之间应该如何通信

    前言 在单页应用中,view与view之间的通信机制一直是一个重点,因为单页应用的所有操作以及状态管理全部发生在一个页面上 没有很好的组织的话很容易就乱了,就算表面上看起来没有问题,事实上会有各种隐忧 ...

  8. Android多线程通信机制

    掌握Android的多线程通信机制,我们首先应该掌握Android中进程与线程是什么. 1. 进程 在Android中,一个应用程序就是一个独立的进程(应用运行在一个独立的环境中,可以避免其他应用程序 ...

  9. Storm进程通信机制

    storm的worker进程之间消息传递机制图: 每个worker都有一个独立的监听进程,监听配置文件中配置过的端口列表supervisor.slots.ports,topology.receiver ...

随机推荐

  1. 【九度OJ】题目1434贪心算法

    题目 本题的贪心算法策略需要深入思考一下 看到题目,最初没有理解题目的要求:看尽量多的完整的节目.尽量多是指数量多,自己理解成观看的时间最长.这样想其实简化了这道题. 正确理解题意后,首先想到的想法是 ...

  2. CodeForce---Educational Codeforces Round 3 D. Gadgets for dollars and pounds 正题

    对于这题笔者无解,只有手抄一份正解过来了: 基本思想就是 : 二分答案,对于第x天,计算它最少的花费f(x),<=s就是可行的,这是一个单调的函数,所以可以二分. 对于f(x)的计算,我用了nl ...

  3. 内核源码分析之进程地址空间(基于3.16-rc4)

    所谓进程的地址空间,指的就是进程的虚拟地址空间.当创建一个进程时,内核会为该进程分配一个线性的地址空间(虚拟地址空间),有了虚拟地址空间后,内核就可以通过页表将进程的物理地址地址空间映射到其虚拟地址空 ...

  4. Hadoop 2.6.0 POM.xml

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  5. JAVA基础----java中E,T,?的区别

    遇到<A>,<B>,<K,V>等,是用到了java中的泛型. 一般使用<T>来声明类型持有者名称,自定义泛型类时,类持有者名称可以使用T(Type) 如 ...

  6. android - python 自动化测试 移动互联网 - SegmentFault

    android - python 自动化测试 移动互联网 - SegmentFault splinter

  7. Oracle 10G (Linux) 冷备恢复

    完整的数据库文件集包括:数据库启动参数文件,控制文件,数据文件,日志文件. 可以通过下面的方式来得到文件的位置和名称. 参数文件 $ORACLE_HOME/dbs/spfile[$ORACLE_SID ...

  8. HDU 4891 The Great Pan (模拟)

    The Great Pan 题目链接: http://acm.hust.edu.cn/vjudge/contest/123554#problem/D Description As a programm ...

  9. 第八章、Linux 磁盘与文件系统管理

    认识 EXT2 文件系统 Linux最传统的磁盘文件系统(filesystem)使用的是EXT2这个啦!所以要了解文件系统就得要由认识EXT2开始! 而文件系统是创建在硬盘上面的,因此我们得了解硬盘的 ...

  10. jps用法

    jps(Java Virtual Machine Process Status Tool)是JDK 1.5提供的一个显示当前所有java进程pid的命令,简单实用,非常适合在linux/unix平台上 ...