Cross Product

These are two vectors:

They can be multiplied using the "Cross Product"
(also see Dot Product)

The Cross Product a × b of two vectors is another vector that is at right angles to both:


And it all happens in 3 dimensions!

Calculating

We can calculate the Cross Product this way:

a × b = |a| |b| sin(θ) n

  • |a| is the magnitude (length) of vector a
  • |b| is the magnitude (length) of vector b
  • θ is the angle between a and b
  • n is the unit vector at right angles to both a and b

So the length is: the length of a times the length of b times the sine of the angle between a and b,

Then we multiply by the vector n to make sure it heads in the right direction (at right angles to both a and b).

OR we can calculate it this way:

When a and b start at the origin point (0,0,0), the Cross Product will end at:

  • cx = aybz − azby
  • cy = azbx − axbz
  • cz = axby − aybx
Example: The cross product of a = (2,3,4) and b = (5,6,7)
  • cx = aybz − azby = 3×7 − 4×6 = −3
  • cy = azbx − axbz = 4×5 − 2×7 = 6
  • cz = axby − aybx = 2×6 − 3×5 = −3

Answer: a × b = (−3,6,−3)

Which Way?

The cross product could point in the completely opposite direction and still be at right angles to the two other vectors, so we have the:

"Right Hand Rule"

With your right-hand, point your index finger along vector a, and point your middle finger along vector b: the cross product goes in the direction of your thumb.

Dot Product

The Cross Product gives a vector answer, and is sometimes called the vector product.

But there is also the Dot Product which gives a scalar (ordinary number) answer, and is sometimes called the scalar product.

Question: What do you get when you cross an elephant with a banana?

Answer: |elephant| |banana| sin(θ) n

Cross Product的更多相关文章

  1. 向量 dot cross product 点积叉积 几何意义

    向量 dot cross product 点积叉积 几何意义 有向量 a b 点积 a * b = |a| * |b| * cosθ 几何意义: 1. a * b == 0,则 a ⊥ b 2. a ...

  2. 向量点积(Dot Product),向量叉积(Cross Product)

    参考的是<游戏和图形学的3D数学入门教程>,非常不错的书,推荐阅读,老外很喜欢把一个东西解释的很详细. 1.向量点积(Dot Product) 向量点积的结果有什么意义?事实上,向量的点积 ...

  3. 向量叉乘 Cross product

    参考:Wiki Cross product

  4. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$

    在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes eq ...

  5. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$

    在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...

  6. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$

    在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...

  7. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$

    在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equ ...

  8. Dot & cross product

    https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/vector-dot-p ...

  9. Dot Product

    These are vectors: They can be multiplied using the "Dot Product" (also see Cross Product) ...

随机推荐

  1. C#编程之“串口通讯多次接收”

    摘要: 主要记录了再C#的串口开发时遇到的问题,以便后续遇到相同问题再重复砍树造轮子. 1.问题场景 板卡和PC间通过UART进行数据通讯,由PC给板卡发送控制命令,板卡返回相应的数据. 2.遇到的问 ...

  2. Ubuntu 12.04 修改键盘映射

    背景: (1) 我的笔记本G450上,Page_up/Page_down键分别和Home/End在同一个键位上,需要同时按住Fn键才能敲出Home/End (2) 习惯用Vim的同志都有这个感觉,Es ...

  3. Chapter 17_3 table的默认值

    对象属性 有很多情况需要把有些属性绑定到某个对象,例如:函数与其名称.table的默认值.数组大小等... 当对象是一个table时,可以通过适当的key将属性存储在这个table中. 如果对象不是一 ...

  4. KMP算法的实现

    今天看到了一篇关于KMP算法的讲解的文章,很难得,讲得非常清楚.分享给大家,希望对大家有帮助.http://kb.cnblogs.com/page/176818/ 我自己基于这个讲解的内容作了一个实现 ...

  5. Java线程池使用

    1.构造函数 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit ...

  6. CVE-2014-1767 利用分析(2015.2)

    CVE-2014-1767利用分析 参考这篇文章利用思路,重现利用,主要说明自己在实现的时候遇到的坑. 利用思路 1. 第一次 IoControl,释放 MDL,我们通过 VirtualAddress ...

  7. 如何在IIS6,7中部署ASP.NET网站(转载)

    查看web.config文件 web.config通常会放在网站的根目录,这个文件中包含了一最重要的网站运行参数.比如: connectionStrings,httpHandlers,httpModu ...

  8. 简单封装常用js方法

    1.uploadfiy插件封装 /* 参数:uploadID:上传控件ID url:请求后台url路径   callback:回调函数 */ uploadfiy({ uploadID: $('#btn ...

  9. android studio的lib和jniLibs

    在android studio 中添加jar和so时,将jar文件直接拷贝到 项目目录\app\libs下即可,将so文件按照平台分类目录放到 项目目录\app\src\main\jniLibs\平台 ...

  10. python2到python3的转换以及f.write在python3 中的用法

    .利用Python内置(Python脚本)工具,帮你自动转换 Python 2.x版本,比如我安装的Python 2.7.2,其在windows下载安装好之后,就自带了相关的一些有用的工具. 其中一个 ...