Cross Product

These are two vectors:

They can be multiplied using the "Cross Product"
(also see Dot Product)

The Cross Product a × b of two vectors is another vector that is at right angles to both:


And it all happens in 3 dimensions!

Calculating

We can calculate the Cross Product this way:

a × b = |a| |b| sin(θ) n

  • |a| is the magnitude (length) of vector a
  • |b| is the magnitude (length) of vector b
  • θ is the angle between a and b
  • n is the unit vector at right angles to both a and b

So the length is: the length of a times the length of b times the sine of the angle between a and b,

Then we multiply by the vector n to make sure it heads in the right direction (at right angles to both a and b).

OR we can calculate it this way:

When a and b start at the origin point (0,0,0), the Cross Product will end at:

  • cx = aybz − azby
  • cy = azbx − axbz
  • cz = axby − aybx
Example: The cross product of a = (2,3,4) and b = (5,6,7)
  • cx = aybz − azby = 3×7 − 4×6 = −3
  • cy = azbx − axbz = 4×5 − 2×7 = 6
  • cz = axby − aybx = 2×6 − 3×5 = −3

Answer: a × b = (−3,6,−3)

Which Way?

The cross product could point in the completely opposite direction and still be at right angles to the two other vectors, so we have the:

"Right Hand Rule"

With your right-hand, point your index finger along vector a, and point your middle finger along vector b: the cross product goes in the direction of your thumb.

Dot Product

The Cross Product gives a vector answer, and is sometimes called the vector product.

But there is also the Dot Product which gives a scalar (ordinary number) answer, and is sometimes called the scalar product.

Question: What do you get when you cross an elephant with a banana?

Answer: |elephant| |banana| sin(θ) n

Cross Product的更多相关文章

  1. 向量 dot cross product 点积叉积 几何意义

    向量 dot cross product 点积叉积 几何意义 有向量 a b 点积 a * b = |a| * |b| * cosθ 几何意义: 1. a * b == 0,则 a ⊥ b 2. a ...

  2. 向量点积(Dot Product),向量叉积(Cross Product)

    参考的是<游戏和图形学的3D数学入门教程>,非常不错的书,推荐阅读,老外很喜欢把一个东西解释的很详细. 1.向量点积(Dot Product) 向量点积的结果有什么意义?事实上,向量的点积 ...

  3. 向量叉乘 Cross product

    参考:Wiki Cross product

  4. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$

    在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes eq ...

  5. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$

    在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...

  6. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$

    在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...

  7. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$

    在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equ ...

  8. Dot & cross product

    https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/vector-dot-p ...

  9. Dot Product

    These are vectors: They can be multiplied using the "Dot Product" (also see Cross Product) ...

随机推荐

  1. 关于++i和i++

    这个东西我忘了好几次了,啊啊啊,难道是没真正理解吗<script> window.onload=function(){ var i=0; var a=++i; alert(a); }< ...

  2. LanSoEditor_advance1.8.0 视频编辑的高级版本

    ------------------------------------------2017年1月11日11:18:33------------------------------------- 我们 ...

  3. 编写CodeMirror Modes详解

    在写新的模式(mode)之前,还是先来概括一下CodeMirror的设计思路.CodeMirror分为三部分:核心,模式,扩展.核心库对外开放了很多接口,而这些接口就是实现新模式或者新扩展的基石. 在 ...

  4. [Q]复制授权了文件但仍显示“未注册”问题(安装在非默认目录或目录包含中文)

    1. 注意要将解压后的文件复制到CAD批量打图精灵安装目录,而不要复制文件夹,复制是提示是否需要覆盖,要选择覆盖. 2. 若通过第1步操作仍然显示“未注册”,则可能是由于安装目录含有中文或者不是默认目 ...

  5. Delphi关键词

    学习的东西越来越多难免会忘记以前的知识,即使是你的大脑很发达也不见得能记得所有的东西,单词,所以做做笔记写写小抄是一个很好的习惯,到需要的时候来翻翻看看,当然个人的作小抄的习惯也不尽相同,这里我自己做 ...

  6. foreach绑定

    目的 foreach可以将一个数组中的实体循环的进行绑定.这在将一个list显示成table时非常有用. 假设数组是observable的,当在绑定后做了add, remove,或者重新排序后,绑定会 ...

  7. ios 开发证书 appids 描述文件关系

    当你准备进行真机测试或者发布应用到App Store上去的时候, 免不了要申请相应的证书.(Development--测试证书. Distribution--发布证书) 进入证书管理相应网站https ...

  8. Documention

    Object.bool Does the object exist? Object.name Components share the same name with the game object a ...

  9. Android:内存优化的一些总结

    ______________________摘录于:http://www.cnblogs.com/yezhennan/p/5442557.html____________________ 1.大图片的 ...

  10. 通过mvn archetype:generate创建Maven项目模板慢的问题

    通过mvn archetype:generate这种交互方式来创建Maven项目模板的时候,经常会长时间卡在Generating project in Interactive mode这一行提示(图1 ...