双显卡笔记本安装CUDA+theano、tensorflow环境
原文出处:http://www.cnblogs.com/jacklu/p/6377820.html
个人知乎主页欢迎关注:https://www.zhihu.com/people/jack_lu,相信我会提供高质量的timeline。
“站在岸上学不会游泳。”看了各种深度学习的新闻、有意思的paper,要开始搭建深度学习环境入坑了。昨天看到一视频展现了tensorflow在Android平台上的应用,感觉潜力巨大,所以选择了tensorflow。
结合几篇安装博客总结了安装方法,可能是最简便的一种了~
笔记本Y430p 显卡GTX850M
操作系统Ubuntu 16.04(经本人测试 14.04 14.10 15.04 15.10 对双显卡的支持都不是特别好)安装好后建议关掉所有更新选项。
python版本 2.7
1、首先保证安装好NVIDIA驱动。如下图所示:
2、安装CUDA
sudo apt-get update
sudo apt-get install nvidia-cuda-toolkit
默认安装cuda 7.5.18 安装之后,是没有/usr/local/cuda*这个文件夹,也没有sample的
3、由于Ubuntu16.04的gcc和g++都是5.0版的,不兼容CUDA7.5版本,需要降级
sudo apt-get install gcc-4.9 g++-4.9
cd /usr/bin
sudo rm gcc
sudo rm g++
sudo ln -s gcc-4.9 gcc
sudo ln -s g++-4.9 g++
4、安装cudnn
下载cudnn 5.0 for cuda7.5 需要nvidia的开发者帐号登录
解压
tar -zxf cudnn-7.5-linux-x64-v5.-ga.tgz cd cuda
复制头文件到/usr/local/include
sudo cp include/cudnn.h /usr/local/include/
复制lib文件到/usr/local/lib
sudo cp lib64/* /usr/local/lib/
并编辑~/.bashrc 添加环境变量
export LD_LIBRARY_PATH=/usr/local/lib
5、安装theano
sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose python-mock python-wheel g++ libopenblas-dev git
sudo pip install Theano
编辑配置文件
sudo gedit ~/.theanorc
加入
[global]
device = gpu
floatX = float32
[nvcc]
flags=-D_FORCE_INLINES
注意有符号-
测试,注意cuDNN版本5005
6、安装tensorflow
根据自己的实际情况参照官网的这张表选择适合的下载链接。
# Ubuntu/Linux -bit, CPU only, Python 2.7
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl # Ubuntu/Linux -bit, GPU enabled, Python 2.7
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl # Mac OS X, CPU only, Python 2.7:
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/tensorflow-0.9.0-py2-none-any.whl # Ubuntu/Linux -bit, CPU only, Python 3.4
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp34-cp34m-linux_x86_64.whl # Ubuntu/Linux -bit, GPU enabled, Python 3.4
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp34-cp34m-linux_x86_64.whl # Ubuntu/Linux -bit, CPU only, Python 3.5
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp35-cp35m-linux_x86_64.whl # Ubuntu/Linux -bit, GPU enabled, Python 3.5
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp35-cp35m-linux_x86_64.whl # Mac OS X, CPU only, Python 3.4 or 3.5:
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/tensorflow-0.9.0-py3-none-any.whl
我在这里选择 64-bit GPU Python 2.7
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl
然后根据自己情况选择
# Python
pip install --upgrade $TF_BINARY_URL # Python
pip3 install --upgrade $TF_BINARY_URL
我在这里选择Python 2
pip install --upgrade $TF_BINARY_URL
测试Tensorflow是否安装成功并使用了CUDA,依次执行以下python代码
import tensorflow as tf
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print sess.run(c)
实验结果如下,表示安装成功!可以开始新的征程啦~
remark:
cudnn version should be 5.1
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
export CUDA_HOME=/usr/local/cuda
参考资料:
https://zhuanlan.zhihu.com/p/23042536?refer=tomasen
https://www.zhihu.com/question/48027732?from=profile_question_card
http://www.ifcoder.us/2003
双显卡笔记本安装CUDA+theano、tensorflow环境的更多相关文章
- 【原】Ubuntu ATI/Intel双显卡 驱动安装
本文只针对含有AMD双显卡的部分机型,已经测试过的包括DELL Vostro 3550/DELL Inspiron 14R (AMD 6630 和 Intel HD 3000).整个安装过程需要使用命 ...
- win10使用笔记本自带显卡GUP安装CUDA,版本问题
1.GPU算力问题 查询:win+r, GPU:GeForce GTX 850m,算力5.0,还可以跑得起来深度项目 2.我们需要查看NVIDIA驱动版本,才能安装合适的CUDA版本. 在C:\Pro ...
- NVIDIA显卡笔记本安装ubuntu驱动以及分辨率之详解
随着对ubuntu的了解,突然想在自己的笔记本上装一个双系统.在网上查了安装方法之后,发现因为nvidia显卡的原因会出现一些问题,结果在我自己装了之后发现问题要比看到的多,再看了无数个帖子之后,最终 ...
- Ubuntu16.04 安装Tensorflow1.7过程记录二:安装CUDA及Tensorflow
参考 How to install Tensorflow 1.7.0 using official pip package 其中的CUDNN应该改为7.05for CUDA9.0 后面安装的spyde ...
- 【tensorflow使用笔记一】:安装linux下tensorflow环境的问题
首先安装Python Python2.7 使用pip安装Python-numpy发现有老版本影响import直接手动删除: 安装default-jdk顺利: 安装matplotlib发现没有tkint ...
- Ubuntu Gnome16.04下安装cuda、theano和opencv
1. 安装显卡驱动 ~$ lspci | grep controller00:02.0 VGA compatible controller: Intel Corporation Sky Lake In ...
- 【视频开发】【计算机视觉】doppia编译之一:前言及安装CUDA
最近做一个"高清视频人流量检测"的项目,由于对实时性要求较高,我们需要较快的检测速度.在搜索茫茫"论"海后,我在"The Fastest Deform ...
- 解决Ubuntu16的风扇高速旋转问题(双显卡)
问题描述 自从我的双显卡的笔记本装上Ubuntu 14 后,风扇狂转.发热巨大.网上一搜索估计是显卡驱动不太行.最近英伟达的Nvidia Prime可以完美地切换双显卡,安装这个软件后,风扇就不会狂转 ...
- 在 Ubuntu16.04上安装anaconda+Spyder+TensorFlow(支持GPU)
TensorFlow 官方文档中文版 http://www.tensorfly.cn/tfdoc/get_started/introduction.html https://zhyack.github ...
随机推荐
- 编码器芯片MLX90363的使用
文档资料 MLX90363 Datasheet MLX90363 Application Note 使用 对于编码器来说,Rotary Application模式 SPI驱动中,CS必须在8个字节都发 ...
- codis 新版本 CodisLabs 编译安装
codis 3.0 版本编译安装 # 首先安装 go 语言 wget https://storage.googleapis.com/golang/go1.4.2.linux-amd64.tar.gz ...
- 原来在ARC下还有这么多不同?!
1.ARC空声明变量 使用ARC的另一个优势是所有未初始化的变量默认都是"空值化"的.这意味着像下面这样的声明使用ARC编译后指向的是空值(nil): NSObject myObj ...
- hadoop+海量数据面试题汇总(一)
hadoop面试题 Q1. Name the most common InputFormats defined in Hadoop? Which one is default ? Following ...
- IOS第三方数据库--FMDB
iOS中原生的SQLite API在使用上相当不友好,在使用时,非常不便.于是,就出现了一系列将SQLite API进行封装的库,例如FMDB.PlausibleDatabase.sqlitepers ...
- el5,6,7的ntpdate服务
在el5里没有ntpdate服务 在el6里有ntpdate服务 在el7里有ntpdate服务
- Codeforces 242E:XOR on Segment(位上的线段树)
http://codeforces.com/problemset/problem/242/E 题意:给出初始n个数,还有m个操作,操作一种是区间求和,一种是区间xor x. 思路:昨天比赛出的一道类似 ...
- 【转】2015年薪酬大涨的15个IT岗位
近日,国外科技 IT 招聘公司 Robert Half 分析了 70 个科技职位后发现 2015 年从事 IT 从业人员的平均起薪将攀升至 5.7%,其中 15 个职位的提升潜力最大. 当企业在招聘过 ...
- 了解HTML/HTML5中的download属性
一.download属性是个什么鬼? 首先看下面这种截图: 如果我们想实现点击上面的下载按钮下载一张图片,你会如何实现? 我们可能会想到一个最简单的方法,就是直接按钮a标签链接一张图片,类似下面这样: ...
- 【NOIP2015】反思+题解
D1T1> 神奇的幻方 模拟即可. #include <cstdio> #include <cstring> #include <algorithm> #de ...