【Machine Learning】Mahout基于协同过滤(CF)的用户推荐
一、Mahout推荐算法简介
Mahout算法框架自带的推荐器有下面这些:
l GenericUserBasedRecommender:基于用户的推荐器,用户数量少时速度快;
l GenericItemBasedRecommender:基于商品推荐器,商品数量少时速度快,尤其当外部提供了商品相似度数据后效率更好;
l SlopeOneRecommender:基于slope-one算法的推荐器,在线推荐或更新较快,需要事先大量预处理运算,物品数量少时较好;
l SVDRecommender:奇异值分解,推荐效果较好,但之前需要大量预处理运算;
l KnnRecommender:基于k近邻算法(KNN),适合于物品数量较小时;
l TreeClusteringRecommender:基于聚类的推荐器,在线推荐较快,之前需要大量预处理运算,用户数量较少时效果好;
Mahout最常用的三个推荐器是上述的前三个,本文的实例仅“基于用户的推荐器”做个实验,其实大体原理都差不多。
二、基于协同过滤(CF)模型的用户推荐
Mahout里自带的基本CF模型原理如下:
GenericUserBasedRecommender是基于用户(user-based)的简单推荐器实现类,推荐主要参照传入的DataModel和UserNeighborhood,总体是三个步骤:
(1)从UserNeighborhood获取当前用户Ui最相似的K个用户集合{U1, U2, …Uk};
(2)从这K个用户集合排除Ui的偏好商品,剩下的Item集合为{Item0, Item1, …Itemm};
(3)对Item集合里每个Itemj计算Ui可能偏好程度值pref(Ui, Itemj),并把Item按此数值从高到低排序,前N个item推荐给用户Ui。
偏好程度值pref计算公式:
三、数据库结构设计
创建数据库mahoutDB,里面创建表table1,具体表的结构如下所示,里面包含4个特征:userId,itemId, preference, date,分别代表用户ID、商品ID、偏好分数、交易日期。
建好table1之后,表结构如下所示。
往table1里导入事先准备好的数据data.txt,
mysql>LOAD DATA LOCAL INFILE ‘data.txt’ INTO TABLE table1;
导入完成过后数据如下所示。
用户ID为1的记录如下所示。
交易日期为20140825的记录如下所示。
当中有一条记录,比如用户ID=2的选择了商品202,偏好值为3.5。那么之后应根据模型算法,将相似用户找出,并把相似用户的偏好商品(排除userId=2他自己所选商品)推荐给用户2。
import java.util.List;
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.model.JDBCDataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.similarity.UserSimilarity; import com.mysql.MysqlDataSource; /**
* mahout基于协同过滤(CF)的推荐
*
*/
public class Mahout {
public static void main(String[] args) throws TasteException { //(1)----连接数据库部分
MysqlDataSource dataSource = new MysqlDataSource();
dataSource.setServerName("localhost");
dataSource.setUser("admin");
dataSource.setPassword("admin");
dataSource.setDatabaseName("mahoutDB");
//(2)----使用MySQLJDBCDataModel数据源读取MySQL里的数据
JDBCDataModel dataModel = new MySQLJDBCDataModel(dataSource, "table1", "userId", "itemId", "preference", "date"); //(3)----数据模型部分
//把MySQLJDBCDataModel对象赋值给DataModel
DataModel model = dataModel;
//用户相似度UserSimilarity:包含相似性度量和邻居参数
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
//相邻用户UserNeighborhood
UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);
//一旦确定相邻用户,一个普通的user-based推荐器被构建,构建一个GenericUserBasedRecommender推荐器需要数据源DataModel,用户相似性UserSimilarity,相邻用户相似度UserNeighborhood
Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);
//向用户1推荐2个商品
List<RecommandedItem> recommendations = recommender.recommend(1, 2);
for(RecommendedItem recommendation : recommendations){
//输出推荐结果
System.out.println(recommendation);
}
}
转自:http://blog.csdn.net/dianacody/article/details/39079015
【Machine Learning】Mahout基于协同过滤(CF)的用户推荐的更多相关文章
- 基于协同过滤的个性化Web推荐
下面这是论文笔记,其实主要是摘抄,这片博士论文很有逻辑性,层层深入,所以笔者保留的比较多. 看到第二章,我发现其实这片文章对我来说更多是科普,科普吧…… 一.论文来源 Personalized Web ...
- 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...
- 协同过滤CF算法之入门
数据规整 首先将评分数据从 ratings.dat 中读出到一个 DataFrame 里: >>> import pandas as pd In [2]: import pandas ...
- 推荐系统算法学习(一)——协同过滤(CF) MF FM FFM
https://blog.csdn.net/qq_23269761/article/details/81355383 1.协同过滤(CF)[基于内存的协同过滤] 优点:简单,可解释 缺点:在稀疏情况下 ...
- mahout基于Hadoop的CF代码分析(转)
来自:http://www.codesky.net/article/201206/171862.html mahout的taste框架是协同过滤算法的实现.它支持DataModel,如文件.数据库.N ...
- 协同过滤 CF & ALS 及在Spark上的实现
使用Spark进行ALS编程的例子可以看:http://www.cnblogs.com/charlesblc/p/6165201.html ALS:alternating least squares ...
- 基于物品的协同过滤item-CF 之电影推荐 python
推荐算法有基于协同的Collaboration Filtering:包括 user Based和item Based:基于内容 : Content Based 协同过滤包括基于物品的协同过滤和基于用户 ...
- 基于mllib的协同过滤实战(电影推荐)
//加载需要的包 import org.apache.spark.rdd._ import org.apache.spark.mllib.recommendation.{ALS, Rating, Ma ...
- MapReduce实现协同过滤中每个用户看过的项目集合
一.知识准备 hadoop自带的例子在 D:\HADOOP_HOME\hadoop-2.6.4\share\hadoop\mapreduce\sources\hadoop-mapreduce-exam ...
随机推荐
- Android他们控制的定义(一)
培养自己的控制步骤定义: 1.要理解View作品 2. 分享到继承View子类 3. 要定义自己的View类添加属性 4. 绘制控件 5. 响应用户消息 6 .自己定义回调函数 一.View ...
- vultr centos x64 6.5.x 升级php7.0
升级前,先卸载 php5.6.x 卸载php5.6.2 从cent 6.5.x 需要卸载: yum remove php56u-mysqlnd-5.6.20-1.ius.centos6.x86_64 ...
- mediator pattern
20.4 中介者模式总结 中介者模式将一个网状的系统结构变成一个以中介者对象为中心的星形结构,在这个星型结构中,使用中介者对象与其他对象的一对多关系来取代原有对象之间的多对多关系.中介者模式在事件驱动 ...
- UML简单梳理类图
依赖 Dependency Class Car{} Class Person{ int a; static int b public void buy(Car c){ int c; .... } } ...
- React Native是一套使用 React 构建 Native app 的编程框架
React Native是一套使用 React 构建 Native app 的编程框架 React Native at first sight what is React Native? 跟据官方的描 ...
- XML文件编码问题
这两天的过程中的一个项目,以解决编码格式ANSI的xml当文件.我遇到了一些问题.下面的例子现在将总结分析过程. 通过win7记事本或notepad++创建一个xml文件test_source: &l ...
- ubuntu下一个jboss-seam-2.2.2.Final/examples/build.xml:754: warning: 'includeantruntime' was not set
[javac] /home/huihui/app/jboss-seam-2.2.2.Final/examples/build.xml:754: warning: 'includeantruntime' ...
- OpenCV面、人眼检测
/* 功能:实现对眼睛.脸部的跟踪. 版本号:1.0 时间:2014-4-27 */ #include <opencv2/objdetect/objdetect.hpp> #include ...
- SQL Server管理员专用连接的使用
原文:SQL Server管理员专用连接的使用 作为一名DBA,经常会处理一些比较棘手的服务无响应问题,鉴于事态的严重性,多数DBA可能直接用“重启”大法,以便尽快的恢复生产环境的正常运转,但是多数情 ...
- POJ 1984 Navigation Nightmare (数据结构-并检查集合)
Navigation Nightmare Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 4072 Accepted: 1 ...