Zeppelin版本0.6.2

1. Export SPARK_HOME

In conf/zeppelin-env.sh, export SPARK_HOME environment variable with your Spark installation path.

You can optionally export HADOOP_CONF_DIR and SPARK_SUBMIT_OPTIONS

export SPARK_HOME=/usr/crh/4.9.2.5-/spark
export HADOOP_CONF_DIR=/etc/hadoop/conf
export JAVA_HOME=/opt/jdk1..0_79

这儿虽然添加了SPARK_HOME但是后面使用的时候还是找不到包。

2. Set master in Interpreter menu

After start Zeppelin, go to Interpreter menu and edit master property in your Spark interpreter setting. The value may vary depending on your Spark cluster deployment type.

spark解释器设置为yarn-client模式

FAQ

1.

ERROR [2016-07-26 16:46:15,999] ({pool-2-thread-2} Job.java[run]:189) - Job failed
java.lang.NoSuchMethodError: scala.reflect.api.JavaUniverse.runtimeMirror(Ljava/lang/ClassLoader;)Lscala/reflect/api/JavaMirrors$JavaMirror;
at org.apache.spark.repl.SparkILoop.<init>(SparkILoop.scala:936)
at org.apache.spark.repl.SparkILoop.<init>(SparkILoop.scala:70)
at org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:765)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:69)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:93)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:341)
at org.apache.zeppelin.scheduler.Job.run(Job.java:176)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:139)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)

Solution

把SPARK_HOME/lib目录下的所有jar包都拷到zeppelin的lib下。

2.

%spark.sql
show tables

org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=root, access=WRITE, inode="/user/root/.sparkStaging/application_1481857320971_0028":hdfs:hdfs:drwxr-xr-x
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:319)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:292)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:213)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:190)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1771)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1755)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkAncestorAccess(FSDirectory.java:1738)
at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:71)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:3905)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1048)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:622)
at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:616)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:969)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2151)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2147)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2145) at org.apache.hadoop.ipc.Client.call(Client.java:1427)
at org.apache.hadoop.ipc.Client.call(Client.java:1358)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
at com.sun.proxy.$Proxy24.mkdirs(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.mkdirs(ClientNamenodeProtocolTranslatorPB.java:558)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:252)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:104)
at com.sun.proxy.$Proxy25.mkdirs(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.primitiveMkdir(DFSClient.java:3018)
at org.apache.hadoop.hdfs.DFSClient.mkdirs(DFSClient.java:2988)
at org.apache.hadoop.hdfs.DistributedFileSystem$21.doCall(DistributedFileSystem.java:1057)
at org.apache.hadoop.hdfs.DistributedFileSystem$21.doCall(DistributedFileSystem.java:1053)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirsInternal(DistributedFileSystem.java:1053)
at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirs(DistributedFileSystem.java:1046)
at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:1877)
at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:598)
at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:281)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:634)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:123)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:57)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:523)
at org.apache.zeppelin.spark.SparkInterpreter.createSparkContext(SparkInterpreter.java:339)
at org.apache.zeppelin.spark.SparkInterpreter.getSparkContext(SparkInterpreter.java:145)
at org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:465)
at org.apache.zeppelin.interpreter.ClassloaderInterpreter.open(ClassloaderInterpreter.java:74)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:68)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:92)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:300)
at org.apache.zeppelin.scheduler.Job.run(Job.java:169)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:134)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)

Solution

hadoop fs -chown root:hdfs /user/root

3.

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.regression.LinearRegression
conf: org.apache.spark.SparkConf = org.apache.spark.SparkConf@6a79f5df
sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext@59b2aabc
spark: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@129d0b9b
org.apache.spark.sql.AnalysisException: Specifying database name or other qualifiers are not allowed for temporary tables. If the table name has dots (.) in it, please quote the table name with backticks (`).;
at org.apache.spark.sql.catalyst.analysis.Catalog$class.checkTableIdentifier(Catalog.scala:)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.checkTableIdentifier(Catalog.scala:)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.lookupRelation(Catalog.scala:)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$.applyOrElse(Analyzer.scala:)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$.applyOrElse(Analyzer.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$.apply(TreeNode.scala:)
val dataset = spark.sql("select knife_dish_power,penetration,knife_dish_torque,total_propulsion,knife_dish_speed_readings,propulsion_speed1 from `tbm.tbm_test` where knife_dish_power!=0 and penetration!=0")

如上sql中给表名和库名添加``。

然后又报如下错:

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.regression.LinearRegression
conf: org.apache.spark.SparkConf = org.apache.spark.SparkConf@4dd69db0
sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext@4072dd9
spark: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@238ac654
java.lang.RuntimeException: Table Not Found: tbm.tbm_test
at scala.sys.package$.error(package.scala:27)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.lookupRelation(Catalog.scala:139)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:257)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$7.applyOrElse(Analyzer.scala:268)

原因:我用的是org.apache.spark.sql.SQLContext对象spark查询hive中的数据,查询hive的数据需要org.apache.spark.sql.hive.HiveContext对象sqlContext或sqlc。

实例:

顺便记录一下spark-shell使用HiveContext:

集群环境是HDP2.3.4.0

spark版本是1.5.2

spark-shell
scala> val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
scala> hiveContext.sql("show tables").collect().foreach(println)
[gps_p1,false]
scala> hiveContext.sql("select * from g").collect().foreach(println)
[1,li]
[1,li]
[1,li]
[1,li]
[1,li]

4.

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.regression.LinearRegression
conf: org.apache.spark.SparkConf = org.apache.spark.SparkConf@4d66e4f8
org.apache.spark.SparkException: Only one SparkContext may be running in this JVM (see SPARK-2243). To ignore this error, set spark.driver.allowMultipleContexts = true. The currently running SparkContext was created at:
org.apache.spark.SparkContext.<init>(SparkContext.scala:82)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:46)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:51)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:53)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:55)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:57)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:59)
$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:61)
$iwC$$iwC$$iwC$$iwC.<init>(<console>:63)
$iwC$$iwC$$iwC.<init>(<console>:65)
$iwC$$iwC.<init>(<console>:67)
$iwC.<init>(<console>:69)
<init>(<console>:71)
.<init>(<console>:75)
.<clinit>(<console>)
.<init>(<console>:7)
.<clinit>(<console>)
$print(<console>)

Solution:

val conf = new SparkConf().setAppName("test").set("spark.driver.allowMultipleContexts", "true")
val sc = new SparkContext(conf)
val spark = new SQLContext(sc)

在上面添加set("spark.driver.allowMultipleContexts", "true")。

Zeppelin使用Spark的yarn-client模式的更多相关文章

  1. Spark之Yarn提交模式

    一.Client模式 提交命令: ./spark-submit --master yarn --class org.apache.examples.SparkPi ../lib/spark-examp ...

  2. 大话Spark(2)-Spark on Yarn运行模式

    Spark On Yarn 有两种运行模式: Yarn - Cluster Yarn - Client 他们的主要区别是: Cluster: Spark的Driver在App Master主进程内运行 ...

  3. Spark on YARN运行模式(图文详解)

    不多说,直接上干货! 请移步 Spark on YARN简介与运行wordcount(master.slave1和slave2)(博主推荐) Spark on YARN模式的安装(spark-1.6. ...

  4. yarn cluster和yarn client模式区别——yarn-cluster适用于生产环境,结果存HDFS;而yarn-client适用于交互和调试,也就是希望快速地看到application的输出

    Yarn-cluster VS Yarn-client 从广义上讲,yarn-cluster适用于生产环境:而yarn-client适用于交互和调试,也就是希望快速地看到application的输出. ...

  5. 解决Spark On Yarn yarn-cluster模式下的No Suitable Driver问题

    Spark版本:2.2.0_2.11 我们在项目中通过Spark SQL JDBC连接MySQL,在启动Driver/Executor执行的时候都碰到了这个问题.网上解决方案我们全部都试过了,奉上我们 ...

  6. Spark(四十九):Spark On YARN启动流程源码分析(一)

    引导: 该篇章主要讲解执行spark-submit.sh提交到将任务提交给Yarn阶段代码分析. spark-submit的入口函数 一般提交一个spark作业的方式采用spark-submit来提交 ...

  7. Spark On YARN启动流程源码分析(一)

    本文主要参考: a. https://www.cnblogs.com/yy3b2007com/p/10934090.html 0. 说明 a. 关于spark源码会不定期的更新与补充 b. 对于spa ...

  8. spark跑YARN模式或Client模式提交任务不成功(application state: ACCEPTED)

    不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPA ...

  9. 理解Spark运行模式(一)(Yarn Client)

    Spark运行模式有Local,STANDALONE,YARN,MESOS,KUBERNETES这5种,其中最为常见的是YARN运行模式,它又可分为Client模式和Cluster模式.这里以Spar ...

随机推荐

  1. DeviceIoControl方式 sys和exe通信

        常识: IRP:I/O Request Package  即输入输出请求包 exe和sys通信时,exe会发出I/O请求.操作系统会将I/O请求转化为相应的IRP数据, 不同类型传递到不同的d ...

  2. POJ 3667 & 1823 Hotel (线段树区间合并)

    两个题目都是用同一个模板,询问最长的连续未覆盖的区间 . lazy代表是否有人,msum代表区间内最大的连续长度,lsum是从左结点往右的连续长度,rsum是从右结点往左的连续长度. 区间合并很恶心啊 ...

  3. No CurrentSessionContext configured 异常解决

    Exception in thread "main" org.hibernate.HibernateException: No CurrentSessionContext conf ...

  4. 基于easyui的webform扩展(续)

    基于easyui的webform扩展(续) 回顾 <前端基于easyui的mvc扩展>.<前端基于easyui的mvc扩展(续)>.<基于easyui的webform扩展 ...

  5. Python-数据库支持

    10.Python-数据库支持 使用数据库的好处: a.支持数据的并发访问,多个用户同时对基于磁盘的数据进行读写而不造成任何文件的损坏: b.支持根据多个数据字段或属性进行复杂的搜索: 1.如何操作数 ...

  6. C#操作AD及Exchange Server总结

    C#操作AD及Exchange Server总结 这篇博客的目的:根据亲身项目经历,总结对AD及Exchange Server的操作,包括新建AD用户,设置密码,为AD用户创建邮箱等. 本文完全原创, ...

  7. TOGAF架构开发方法(ADM)之架构变更管理阶段

    TOGAF架构开发方法(ADM)之架构变更管理阶段 1.10 架构变更管理(Architecture Change Management) 企业架构开发方法各阶段——架构变更管理 1.10.1 目标 ...

  8. C++中内存泄漏的检测方法介绍

    C++中内存泄漏的检测方法介绍 首先我们需要知道程序有没有内存泄露,然后定位到底是哪行代码出现内存泄露了,这样才能将其修复. 最简单的方法当然是借助于专业的检测工具,比较有名如BoundsCheck, ...

  9. 10161 - Ant on a Chessboard

    Problem A.Ant on a Chessboard Background One day, an ant called Alice came to an M*M chessboard. She ...

  10. 给你的git仓库瘦身

    很久没有写博客了,最近遇到了一个git问题,比较典型,记录下来与大家分享. 我们使用git版本控制的时候享受了很多便利,不管是代码合并,分支提供给我们的并发,但我们也往往忽略了每次提交之后在我们本地项 ...