pandas是基于numpy包扩展而来的,因而numpy的绝大多数方法在pandas中都能适用。

pandas中我们要熟悉两个数据结构Series 和DataFrame

Series是类似于数组的对象,它有一组数据和与之相关的标签组成。

import pandas as pd

object=pd.Series([2,5,8,9])

print(object)

结果为:

0 2
1 5
2 8
3 9
dtype: int64

结果中包含一列数据和一列标签
我们可以用values和index分别进行引用

print(object.values)
print(object.index)

结果为:

[2 5 8 9]  
RangeIndex(start=0, stop=4, step=1)

我们还可以按照自己的意愿构建标签

object=pd.Series([2,5,8,9],index=['a','b','c','d'])

print(object)

结果为:

a 2
b 5
c 8
d 9
dtype: int64

我们还可以对序列进行运算

print(object[object>5])

结果为

c 8
d 9
dtype: int64

也可以把Series看成一个字典,使用in进行判断

print('a' in object)

结果为:

True

另外,值是不能直接被索引到的

print(2 in object)

结果为:

False

Series中的一些方法,

isnull或者notnull可以用于判断数据中缺失值情况

name或者index.name可以对数据进行重命名

DataFrame数据框,也是一种数据结构,和R中的数据框类似

data={'year':[2000,2001,2002,2003],
'income':[3000,3500,4500,6000]} data=pd.DataFrame(data) print(data)

结果为:

income year
0 3000 2000
1 3500 2001
2 4500 2002
3 6000 2003

data1=pd.DataFrame(data,columns=['year','income','outcome'],
    index=['a','b','c','d'])
print(data1)

结果为:

year income outcome
a 2000 3000 NaN
b 2001 3500 NaN
c 2002 4500 NaN
d 2003 6000 NaN

新增加列outcome在data中没有,则用na值代替

索引的几种方式

print(data1['year'])
print(data1.year)

两种索引是等价的,都是对列进行索引,结果为:

a 2000
b 2001
c 2002
d 2003
Name: year, dtype: int64

对行进行索引,则是另外一种形式

print(data1.ix['a'])

结果为:

year 2000
income 3000
outcome NaN
Name: a, dtype: object

print(data1[1:3])

或者也可以用切片的形式

结果为:

year income outcome
b 2001 3500 NaN
c 2002 4500 NaN

增加和删除列

data1['money']=np.arange(4)

增加列为money

year income outcome money
a 2000 3000 NaN 0
b 2001 3500 NaN 1
c 2002 4500 NaN 2
d 2003 6000 NaN 3

del data1['outcome']

删除列结果为:

year income money
a 2000 3000 0
b 2001 3500 1
c 2002 4500 2
d 2003 6000 3

pandas中的主要索引对象以及相对应的索引方法和属性

此外还有一个reindex函数可以重新构建索引

data={'year':[2000,2001,2002,2003],
    'income':[3000,3500,4500,6000]} data1=pd.DataFrame(data,columns=['year','income','outcome'],
index=['a','b','c','d']) data2=data1.reindex(['a','b','c','d','e'])
print(data2)

结果为:

data2=data1.reindex(['a','b','c','d','e'],method='ffill')
print(data2)

使用方法后的结果为:

索引删除以及过滤等相关方法

 print(data1.drop(['a']))

结果为:

print(data1[data1['year']>2001])

结果为:

 print(data1.ix[['a','b'],['year','income']])

结果为 :

print(data1.ix[data1.year>2000,:2])

结果为:

详细的索引过滤方法如下:

dataframe的算法运算

data={'year':[2000,2001,2002,2003],
'income':[3000,3500,4500,6000]} data1=pd.DataFrame(data,columns=['year','income','outcome'],
index=['a','b','c','d']) data2=pd.DataFrame(data,columns=['year','income','outcome'],
index=['a','b','c','d']) data1['outcome']=range(1,5) data2=data2.reindex(['a','b','c','d','e']) print(data1.add(data2,fill_value=0))

结果为:

对dataframe进行排序

data=pd.DataFrame(np.arange(10).reshape((2,5)),index=['c','a'],
           columns=['one','four','two','three','five']) print(data)

结果为:

print(data.sort_index())

结果为:

print(data.sort_index(axis=1))

结果为:

print(data.sort_values(by='one'))

结果为:

print(data.sort_values(by='one',ascending=False))

结果为:

这里是对结果进行降序排列

汇总以及统计描述

data=pd.DataFrame(np.arange(10).reshape((2,5)),index=['c','a'],
columns=['one','four','two','three','five']) print(data.describe())

结果为:

print(data.sum())

结果为:

print(data.sum(axis=1))

结果为:

详细约简方法

相关描述统计函数

相关系数与协方差

data=pd.DataFrame(np.random.random(20).reshape((4,5)),index=['c','a','b','c'],
columns=['one','four','two','three','five']) print(data)

结果为:

print(data.one.corr(data.three))

one和three的相关系数为:

0.706077105725

print(data.one.cov(data.three))

one和three的协方差为:

0.0677896135613

print(data.corrwith(data.one))

one和所有列的相关系数:

唯一值,成员资格等方法

data=pd.Series(['a','a','b','b','b','c','d','d'])

print(data.unique())

结果为:

['a' 'b' 'c' 'd']

print(data.isin(['b']))

结果为:

0 False
1 False
2 True
3 True
4 True
5 False
6 False
7 False
dtype: bool

 print(pd.value_counts(data.values,sort=False))

结果为:

d 2
c 1
b 3
a 2
dtype: int64

缺失值处理

data=pd.Series(['a','a','b',np.nan,'b','c',np.nan,'d'])

print(data.isnull())

结果为:

0 False
1 False
2 False
3 True
4 False
5 False
6 True
7 False
dtype: bool

print(data.dropna())

结果为:

0 a
1 a
2 b
4 b
5 c
7 d
dtype: object

 print(data.ffill())

结果为:

0 a
1 a
2 b
3 b
4 b
5 c
6 c
7 d
dtype: object

 print(data.fillna(0))

结果为:

0 a
1 a
2 b
3 0
4 b
5 c
6 0
7 d
dtype: object

层次化索引

可以对数据进行多维度的索引

data = pd.Series(np.random.randn(10), index=[['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd', 'd'],
         [1, 2, 3, 1, 2, 3, 1, 2, 2, 3]]) print(data)

结果为:

print(data.index)

结果为:

MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],

labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 1, 2]])

print(data['c'])

结果为:

print(data[:,2])

结果为:

 print(data.unstack())

结果为:

把数据转换成为一个dataframe

print(data.unstack().stack())

unstack()的逆运算

了解这些,应该可以进行一些常规的数据处理了。

python pandas 数据处理的更多相关文章

  1. Python———pandas数据处理

    pandas模块 更高级的数据分析工具基于NumPy构建包含Series和DataFrame两种数据结构,以及相应方法 调用方法:from pandas import  Series, DataFra ...

  2. Python——pandas数据处理(python programming)

  3. Python空间数据处理环境搭

    Python空间数据处理环境搭 Conda的下载和安装 什么是Conda? 官方定义:Package, dependency and environment management for any la ...

  4. Python Pandas的使用 !!!!!详解

     Pandas是一个基于python中Numpy模块的一个模块 Python在数据处理和准备⽅⾯⼀直做得很好,但在数据分析和建模⽅⾯就差⼀些.pandas帮助填补了这⼀空⽩,使您能够在Python中执 ...

  5. python & pandas链接mysql数据库

    Python&pandas与mysql连接 1.python 与mysql 连接及操作,直接上代码,简单直接高效: import MySQLdb try: conn = MySQLdb.con ...

  6. Python pandas ERROR 2006 (HY000): MySQL server has gone away

    之前在做python pandas大数据分析的时候,在将分析后的数据存入mysql的时候报ERROR 2006 (HY000): MySQL server has gone away 原因分析:在对百 ...

  7. python地理数据处理库geopy

    http://blog.csdn.net/pipisorry/article/details/52205266 python地理位置处理 python地理编码地址以及用来处理经纬度的库 GeoDjan ...

  8. Python+Pandas 读取Oracle数据库

    Python+Pandas 读取Oracle数据库 import pandas as pd from sqlalchemy import create_engine import cx_Oracle ...

  9. 看到篇博文,用python pandas改写了下

    看到篇博文,https://blog.csdn.net/young2415/article/details/82795688 需求是需要统计部门礼品数量,自己简单绘制了个表格,如下: 大意是,每个部门 ...

随机推荐

  1. ASP.NET所谓前台调用后台、后台调用前台想到HTTP——实践篇

    由ASP.NET所谓前台调用后台.后台调用前台想到HTTP——实践篇 在由ASP.NET所谓前台调用后台.后台调用前台想到HTTP——理论篇中描述了一下ASP.NET新手的三个问题及相关的HTTP协议 ...

  2. NSSortDescriptor(数组排序)

    如果数组里面的每一个元素都是一个个model,例如 DepartsDate.h文件 [plain] view plaincopy #import <Foundation/Foundation.h ...

  3. 支持异步同步的分布式CommandBus MSMQ实现

    支持异步同步的分布式CommandBus MSMQ实现 先上一张本文所描述的适用场景图 分布式场景,共3台server: 前端Server Order App Server Warehouse App ...

  4. 人工智能搜索算法(深度优先、迭代加深、一致代价、A*搜索)

    搜索算法问题求解 一.需求分析 分别用深度优先.迭代加深.一致代价.A*搜索算法得到从起始点Arad到目标点Bucharest的一条路径,即为罗马尼亚问题的一个解,在求解的过程中记录每种算法得到的解, ...

  5. SQL Server中的高可用性1

    SQL Server中的高可用性(1)----高可用性概览   自从SQL Server 2005以来,微软已经提供了多种高可用性技术来减少宕机时间和增加对业务数据的保护,而随着SQL Server ...

  6. Arduino 各种模块篇 RGB LED灯

    示例代码: 类似与这样的led,共阴rgb led,通过调节不同的亮度,组合成不同的颜色. 示例代码: /* 作者:极客工坊 时间:2012年12月18日 IDE版本号:1.0.1 发布地址:www. ...

  7. 超级强悍的PHP代码编辑器PHPstorm及配置

    如何下载安装 官方网站:http://www.jetbrains.com/phpstorm/,本篇文章展示的是5.0版本以,所以,如果你的软件版本过高,可能可有误,所以,如果有问题,请在本站留言,做为 ...

  8. Objective-C非正式协议与正式协议

    这两个概念困扰我很久了,一直都很像搞清楚到非正式协议和正式协议有什么区别和联系,下面结合网上的资料和自己的看法谈谈这个问题. 一.非正式协议 显然这个名词是相对于正式协议而言的.在解释非正式协议之前, ...

  9. Speex Acoustic Echo Cancellation (AEC) 回声消除模块的使用

    背景:回声与啸叫的产生  http://blog.csdn.net/u011202336/article/details/9238397 参考资料:  http://www.speex.org/doc ...

  10. 错误: 找不到或无法加载主类 tomcat-juli.jar

    错误: 找不到或无法加载主类 tomcat-juli.jar 然后就可以用了.