虽然R很强大,但如果对SQL非常熟悉,也不能浪费这项技能了,可以用上sqldf包,从example("sqldf")抄了几条用法放在这里,以后可能会用上。

library("tcltk")

a1r <- head(warpbreaks)

a1s <- sqldf("select * from warpbreaks limit 6")

a2r <- subset(CO2, grepl("^Qn", Plant))

a2s <- sqldf("select * from CO2 where Plant like 'Qn%'")

data(farms, package = "MASS")

a3r <- subset(farms, Manag %in% c("BF", "HF"))

row.names(a3r) <- NULL

a3s <- sqldf("select * from farms where Manag in ('BF', 'HF')")

a4r <- subset(warpbreaks, breaks >= 20 & breaks <= 30)

a4s <- sqldf("select * from warpbreaks where breaks between 20 and 30",  row.names = TRUE)

a5r <- subset(farms, Mois == 'M1')

a5s <- sqldf("select * from farms where Mois = 'M1'", row.names = TRUE)

a6r <- subset(farms, Mois == 'M2')

a6s <- sqldf("select * from farms where Mois = 'M2'", row.names = TRUE)

a7r <- rbind(a5r, a6r)

a7s <- sqldf("select * from a5s union all select * from a6s")

row.names(a7r) <- NULL

其它例子暂时用不到,就不试了,把example(sqldf)的输出记录在这里。

sqldf> # aggregate - avg conc and uptake by Plant and Type
sqldf> a8r <- aggregate(iris[1:2], iris[5], mean)

sqldf> a8s <- sqldf('select Species, avg("Sepal.Length") `Sepal.Length`,
sqldf+ avg("Sepal.Width") `Sepal.Width` from iris group by Species')

sqldf> all.equal(a8r, a8s)
[1] TRUE

sqldf> # by - avg conc and total uptake by Plant and Type
sqldf> a9r <- do.call(rbind, by(iris, iris[5], function(x) with(x,
sqldf+ data.frame(Species = Species[1],
sqldf+ mean.Sepal.Length = mean(Sepal.Length),
sqldf+ mean.Sepal.Width = mean(Sepal.Width),
sqldf+ mean.Sepal.ratio = mean(Sepal.Length/Sepal.Width)))))

sqldf> row.names(a9r) <- NULL

sqldf> a9s <- sqldf('select Species, avg("Sepal.Length") `mean.Sepal.Length`,
sqldf+ avg("Sepal.Width") `mean.Sepal.Width`,
sqldf+ avg("Sepal.Length"/"Sepal.Width") `mean.Sepal.ratio` from iris
sqldf+ group by Species')

sqldf> all.equal(a9r, a9s)
[1] TRUE

sqldf> # head - top 3 breaks
sqldf> a10r <- head(warpbreaks[order(warpbreaks$breaks, decreasing = TRUE), ], 3)

sqldf> a10s <- sqldf("select * from warpbreaks order by breaks desc limit 3")

sqldf> row.names(a10r) <- NULL

sqldf> identical(a10r, a10s)
[1] TRUE

sqldf> # head - bottom 3 breaks
sqldf> a11r <- head(warpbreaks[order(warpbreaks$breaks), ], 3)

sqldf> a11s <- sqldf("select * from warpbreaks order by breaks limit 3")

sqldf> # attributes(a11r) <- attributes(a11s) <- NULL
sqldf> row.names(a11r) <- NULL

sqldf> identical(a11r, a11s)
[1] TRUE

sqldf> # ave - rows for which v exceeds its group average where g is group
sqldf> DF <- data.frame(g = rep(1:2, each = 5), t = rep(1:5, 2), v = 1:10)

sqldf> a12r <- subset(DF, v > ave(v, g, FUN = mean))

sqldf> Gavg <- sqldf("select g, avg(v) as avg_v from DF group by g")

sqldf> a12s <- sqldf("select DF.g, t, v from DF, Gavg where DF.g = Gavg.g and v > avg_v")

sqldf> row.names(a12r) <- NULL

sqldf> identical(a12r, a12s)
[1] TRUE

sqldf> # same but reduce the two select statements to one using a subquery
sqldf> a13s <- sqldf("select g, t, v
sqldf+ from DF d1, (select g as g2, avg(v) as avg_v from DF group by g)
sqldf+ where d1.g = g2 and v > avg_v")

sqldf> identical(a12r, a13s)
[1] TRUE

sqldf> # same but shorten using natural join
sqldf> a14s <- sqldf("select g, t, v
sqldf+ from DF
sqldf+ natural join (select g, avg(v) as avg_v from DF group by g)
sqldf+ where v > avg_v")

sqldf> identical(a12r, a14s)
[1] TRUE

sqldf> # table
sqldf> a15r <- table(warpbreaks$tension, warpbreaks$wool)

sqldf> a15s <- sqldf("select sum(wool = 'A'), sum(wool = 'B')
sqldf+ from warpbreaks group by tension")

sqldf> all.equal(as.data.frame.matrix(a15r), a15s, check.attributes = FALSE)
[1] TRUE

sqldf> # reshape
sqldf> t.names <- paste("t", unique(as.character(DF$t)), sep = "_")

sqldf> a16r <- reshape(DF, direction = "wide", timevar = "t", idvar = "g", varying = list(t.names))

sqldf> a16s <- sqldf("select
sqldf+ g,
sqldf+ sum((t == 1) * v) t_1,
sqldf+ sum((t == 2) * v) t_2,
sqldf+ sum((t == 3) * v) t_3,
sqldf+ sum((t == 4) * v) t_4,
sqldf+ sum((t == 5) * v) t_5
sqldf+ from DF group by g")

sqldf> all.equal(a16r, a16s, check.attributes = FALSE)
[1] TRUE

sqldf> # order
sqldf> a17r <- Formaldehyde[order(Formaldehyde$optden, decreasing = TRUE), ]

sqldf> a17s <- sqldf("select * from Formaldehyde order by optden desc")

sqldf> row.names(a17r) <- NULL

sqldf> identical(a17r, a17s)
[1] TRUE

sqldf> # centered moving average of length 7
sqldf> set.seed(1)

sqldf> DF <- data.frame(x = rnorm(15, 1:15))

sqldf> s18 <- sqldf("select a.x x, avg(b.x) movavgx from DF a, DF b
sqldf+ where a.row_names - b.row_names between -3 and 3
sqldf+ group by a.row_names having count(*) = 7
sqldf+ order by a.row_names+0",
sqldf+ row.names = TRUE)

sqldf> r18 <- data.frame(x = DF[4:12,], movavgx = rowMeans(embed(DF$x, 7)))

sqldf> row.names(r18) <- NULL

sqldf> all.equal(r18, s18)
[1] TRUE

sqldf> # merge. a19r and a19s are same except row order and row names
sqldf> A <- data.frame(a1 = c(1, 2, 1), a2 = c(2, 3, 3), a3 = c(3, 1, 2))

sqldf> B <- data.frame(b1 = 1:2, b2 = 2:1)

sqldf> a19s <- sqldf("select * from A, B")

sqldf> a19r <- merge(A, B)

sqldf> Sort <- function(DF) DF[do.call(order, DF),]

sqldf> all.equal(Sort(a19s), Sort(a19r), check.attributes = FALSE)
[1] TRUE

sqldf> # within Date, of the highest quality records list the one closest
sqldf> # to noon. Note use of two sql statements in one call to sqldf.
sqldf>
sqldf> Lines <- "DeployID Date.Time LocationQuality Latitude Longitude
sqldf+ STM05-1 2005/02/28 17:35 Good -35.562 177.158
sqldf+ STM05-1 2005/02/28 19:44 Good -35.487 177.129
sqldf+ STM05-1 2005/02/28 23:01 Unknown -35.399 177.064
sqldf+ STM05-1 2005/03/01 07:28 Unknown -34.978 177.268
sqldf+ STM05-1 2005/03/01 18:06 Poor -34.799 177.027
sqldf+ STM05-1 2005/03/01 18:47 Poor -34.85 177.059
sqldf+ STM05-2 2005/02/28 12:49 Good -35.928 177.328
sqldf+ STM05-2 2005/02/28 21:23 Poor -35.926 177.314
sqldf+ "

sqldf> DF <- read.table(textConnection(Lines), skip = 1, as.is = TRUE,
sqldf+ col.names = c("Id", "Date", "Time", "Quality", "Lat", "Long"))

sqldf> sqldf(c("create temp table DFo as select * from DF order by
sqldf+ Date DESC, Quality DESC,
sqldf+ abs(substr(Time, 1, 2) + substr(Time, 4, 2) /60 - 12) DESC",
sqldf+ "select * from DFo group by Date"))
Id Date Time Quality Lat Long
1 STM05-2 2005/02/28 12:49 Good -35.928 177.328
2 STM05-1 2005/03/01 18:47 Poor -34.850 177.059

sqldf> ## Not run:
sqldf> ##D
sqldf> ##D # test of file connections with sqldf
sqldf> ##D
sqldf> ##D # create test .csv file of just 3 records
sqldf> ##D write.table(head(iris, 3), "iris3.dat", sep = ",", quote = FALSE)
sqldf> ##D
sqldf> ##D # look at contents of iris3.dat
sqldf> ##D readLines("iris3.dat")
sqldf> ##D
sqldf> ##D # set up file connection
sqldf> ##D iris3 <- file("iris3.dat")
sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3')
sqldf> ##D
sqldf> ##D # using a non-default separator
sqldf> ##D # file.format can be an attribute of file object or an arg passed to sqldf
sqldf> ##D write.table(head(iris, 3), "iris3.dat", sep = ";", quote = FALSE)
sqldf> ##D iris3 <- file("iris3.dat")
sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3', file.format = list(sep = ";"))
sqldf> ##D
sqldf> ##D # same but pass file.format through attribute of file object
sqldf> ##D attr(iris3, "file.format") <- list(sep = ";")
sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3')
sqldf> ##D
sqldf> ##D # copy file straight to disk without going through R
sqldf> ##D # and then retrieve portion into R
sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3', dbname = tempfile())
sqldf> ##D
sqldf> ##D ### same as previous example except it allows multiple queries against
sqldf> ##D ### the database. We use iris3 from before. This time we use an
sqldf> ##D ### in memory SQLite database.
sqldf> ##D
sqldf> ##D sqldf() # open a connection
sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3')
sqldf> ##D
sqldf> ##D # At this point we have an iris3 variable in both
sqldf> ##D # the R workspace and in the SQLite database so we need to
sqldf> ##D # explicitly let it know we want the version in the database.
sqldf> ##D # If we were not to do that it would try to use the R version
sqldf> ##D # by default and fail since sqldf would prevent it from
sqldf> ##D # overwriting the version already in the database to protect
sqldf> ##D # the user from inadvertent errors.
sqldf> ##D sqldf('select * from main.iris3 where "Sepal.Width" > 4')
sqldf> ##D sqldf('select * from main.iris3 where "Sepal_Width" < 4')
sqldf> ##D sqldf() # close connection
sqldf> ##D
sqldf> ##D ### another way to do this is a mix of sqldf and RSQLite statements
sqldf> ##D ### In that case we need to fetch the connection for use with RSQLite
sqldf> ##D ### and do not have to specifically refer to main since RSQLite can
sqldf> ##D ### only access the database.
sqldf> ##D
sqldf> ##D con <- sqldf()
sqldf> ##D # this iris3 refers to the R variable and file
sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3')
sqldf> ##D sqldf("select count(*) from iris3")
sqldf> ##D # these iris3 refer to the database table
sqldf> ##D dbGetQuery(con, 'select * from iris3 where "Sepal.Width" > 4')
sqldf> ##D dbGetQuery(con, 'select * from iris3 where "Sepal.Width" < 4')
sqldf> ##D sqldf()
sqldf> ##D
sqldf> ## End(Not run)

R语言学习笔记:SQL操作的更多相关文章

  1. R语言学习笔记之: 论如何正确把EXCEL文件喂给R处理

    博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html ---- 前言: 应用背景兼吐槽 继续延续之前每个月至少一次更新博客,归纳总结学习心得好习惯. ...

  2. R语言学习笔记:基础知识

    1.数据分析金字塔 2.[文件]-[改变工作目录] 3.[程序包]-[设定CRAN镜像] [程序包]-[安装程序包] 4.向量 c() 例:x=c(2,5,8,3,5,9) 例:x=c(1:100) ...

  3. R语言学习笔记(二)

    今天主要学习了两个统计学的基本概念:峰度和偏度,并且用R语言来描述. > vars<-c("mpg","hp","wt") &g ...

  4. R语言学习笔记:字符串处理

    想在R语言中生成一个图形文件的文件名,前缀是fitbit,后面跟上月份,再加上".jpg",先不百度,试了试其它语言的类似语法,没一个可行的: C#中:"fitbit&q ...

  5. R语言学习笔记:向量

    向量是R语言最基本的数据类型. 单个数值(标量)其实没有单独的数据类型,它只不过是只有一个元素的向量. x <- c(1, 2, 4, 9) x <- c(x[1:3], 88, x[4] ...

  6. R语言学习笔记:小试R环境

    买了三本R语言的书,同时使用来学习R语言,粗略翻下来感觉第一本最好: <R语言编程艺术>The Art of R Programming <R语言初学者使用>A Beginne ...

  7. R语言学习笔记:向量化

    R语言最强大的方面之一就是函数的向量化,这些函数可以直接对向量的每个元素进行操作.例如: 对每个元素进行开方 > v<-c(4,3,8,16,7.3) > v [1]  4.0  3 ...

  8. R语言学习笔记:使用reshape2包实现整合与重构

    R语言中提供了许多用来整合和重塑数据的强大方法. 整合 aggregate 重塑 reshape 在整合数据时,往往将多组观测值替换为根据这些观测计算的描述统计量. 在重塑数据时,则会通过修改数据的结 ...

  9. R语言学习笔记1——R语言中的基本对象

    R语言,一种自由软件编程语言与操作环境,主要用于统计分析.绘图.数据挖掘.R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发(也因此称为R),现在由“R开发核心 ...

  10. R语言学习笔记——C#中如何使用R语言setwd()函数

    在R语言编译器中,设置当前工作文件夹可以用setwd()函数. > setwd("e://桌面//")> setwd("e:\桌面\")> s ...

随机推荐

  1. 将main方法打成jar包,并引用第三方的maven jar包

    一.准备工作.执行命令 学习插件: 学习apache的打包插件maven-assembly-plugin:http://maven.apache.org/plugins/maven-assembly- ...

  2. java攻城狮之路(Android篇)--SQLite

    一.Junit    1.怎么使用        在AndroidManifest.xml文件中进行配置, 在manifest借点下配置instrumentation, 在application借点下 ...

  3. LED子系统剖析

    写之前,先看一张图: 上次说了LED驱动程序,Linux自身也携带了LED驱动,且是脱离平台的,即LED子系统.操作起来十分简单.但是它的实质却不是那么容易,研究了一个晚上,终于明白了其中一个文件的功 ...

  4. 红黑树(三)之 Linux内核中红黑树的经典实现

    概要 前面分别介绍了红黑树的理论知识 以及 通过C语言实现了红黑树.本章继续会红黑树进行介绍,下面将Linux 内核中的红黑树单独移植出来进行测试验证.若读者对红黑树的理论知识不熟悉,建立先学习红黑树 ...

  5. [IR] Link Analysis

    网络信息的特点在于: Query: "IBM" --> "Computer" --> documentIDs. In degree i 正比于 1/ ...

  6. yousa_team团队项目——兼职平台网站 工作进度

    4月31 初步设计网站界面,功能以及数据库关系图 网站包括登陆注册界面,商家和学生都有个人主页,查看兼职信息界面和反馈界面,管理员有查看反馈界面,查看兼职市场,管理后台界面 登录注册界面实现用户的登陆 ...

  7. ADO.NET 连接方式和非链接方式访问数据库

    一.//连接方式访问数据库的主要步骤(利用DataReader对象实现数据库连接模式) 1.创建连接对象(连接字符串) SqlConnection con = new SqlConnection(Co ...

  8. linq之let子句

    在Linq查询中Let子句可以创建一个新的范围变量,并使用该变量保存表达式的结果. 看下面的例子: private void LetQuery() { List<UserBaseInfo> ...

  9. 重构第27天 去除上帝类(Remove God Classes)

    理解:本文中的”去除上帝类”是指把一个看似功能很强且很难维护的类,按照职责把自己的属性或方法分派到各自的类中或分解成功能明确的类,从而去掉上帝类. 详解:我们经常可以在一些原来的代码中见到一些类明确违 ...

  10. 字符串与json之间的相互转化

    先在数据库中建表: 再从后台将表取出来,然后转化为json格式,再将其执行ToString()操作后,赋值给前台的隐藏域. 注意引用using Newtonsoft.Json; 前台利用js将隐藏域中 ...