std::map

template < class Key,                                     // map::key_type
class T, // map::mapped_type
class Compare = less<Key>, // map::key_compare
class Alloc = allocator<pair<const Key,T> > // map::allocator_type
> class map;

Map

Maps are associative containers that store elements formed by a combination of a key value and a mapped value, following a specific order.

In a map, the key values are generally used to sort and uniquely identify the elements, while the mapped values store the content associated to this key. The types of key and mapped value may differ, and are grouped together in member type value_type, which is a pair type combining both:

typedef pair<const Key, T> value_type;

Internally, the elements in a map are always sorted by its key following a specific strict weak ordering criterion indicated by its internal comparison object (of type Compare).

map containers are generally slower than unordered_map containers to access individual elements by their key, but they allow the direct iteration on subsets based on their order.

The mapped values in a map can be accessed directly by their corresponding key using the bracket(方括号) operator ((operator[]).

Maps are typically implemented as binary search trees(二叉搜索树).

Container properties

  • Associative: Elements in associative containers are referenced by their key and not by their absolute position in the container.
  • Ordered: The elements in the container follow a strict order at all times. All inserted elements are given a position in this order.
  • Map: Each element associates a key to a mapped value: Keys are meant to identify the elements whose main content is the mapped value.
  • Unique keys: No two elements in the container can have equivalent keys.
  • Allocator-aware: The container uses an allocator object to dynamically handle its storage needs.

Template parameters

  • Key: Type of the keys. Each element in a map is uniquely identified by its key value. Aliased as member type map::key_type.
  • T: Type of the mapped value. Each element in a map stores some data as its mapped value. Aliased as member type map::mapped_type.
  • Compare: A binary predicate(二元谓词) that takes two element keys as arguments and returns a bool. The expression comp(a,b), where comp is an object of this type and a and b are key values, shall return true if a is considered to go before b in the strict weak ordering the function defines. The map object uses this expression to determine both the order the elements follow in the container and whether two element keys are equivalent (by comparing them reflexively: they are equivalent if !comp(a,b) && !comp(b,a)). No two elements in a map container can have equivalent keys. This can be a function pointer or a function object (see constructor for an example). This defaults to less, which returns the same as applying the less-than operator (a<b). Aliased as member type map::key_compare.
  • Alloc: Type of the allocator object used to define the storage allocation model. By default, the allocator class template is used, which defines the simplest memory allocation model and is value-independent. Aliased as member type map::allocator_type.

Member types

member type definition notes
key_type The first template parameter (Key)
mapped_type The second template parameter (T)
value_type pair<const key_type,mapped_type>
key_compare The third template parameter (Compare) defaults to: less<key_type>
value_compare Nested function class to compare elements see value_comp
allocator_type The fourth template parameter (Alloc) defaults to: allocator<value_type>
reference value_type&
const_reference const value_type&
pointer allocator_traits<allocator_type>::pointer for the default allocator: value_type*
const_pointer allocator_traits<allocator_type>::const_pointer for the default allocator: const value_type*
iterator a bidirectional iterator to value_type convertible to const_iterator
const_iterator a bidirectional iterator to const value_type
reverse_iterator reverse_iterator
const_reverse_iterator reverse_iterator<const_iterator>
difference_type a signed integral type, identical to:
iterator_traits::difference_type usually the same as ptrdiff_t
size_type an unsigned integral type that can represent any non-negative value of difference_type usually the same as size_t

Member functions

  • (constructor) Construct map (public member function )
  • (destructor) Map destructor (public member function )
  • operator= Copy container content (public member function )

Iterators:

  • begin: Return iterator to beginning (public member function )
  • end: Return iterator to end (public member function )
  • rbegin: Return reverse iterator to reverse beginning (public member function )
  • rend: Return reverse iterator to reverse end (public member function )
  • cbegin: Return const_iterator to beginning (public member function )
  • cend: Return const_iterator to end (public member function )
  • crbegin: Return const_reverse_iterator to reverse beginning (public member function )
  • crend: Return const_reverse_iterator to reverse end (public member function )

Capacity:

  • empty: Test whether container is empty (public member function )
  • size: Return container size (public member function )
  • max_size: Return maximum size (public member function )

Element access:

  • operator[]: Access element (public member function )
  • at: Access element (public member function )

Modifiers:

  • insert: Insert elements (public member function )
  • erase: Erase elements (public member function )
  • swap: Swap content (public member function )
  • clear: Clear content (public member function )
  • emplace: Construct and insert element (public member function )
  • emplace_hint: Construct and insert element with hint (public member function )

Observers(观察者):

  • key_comp: Return key comparison object (public member function )
  • value_comp: Return value comparison object (public member function )

Operations:

  • find: Get iterator to element (public member function )
  • count: Count elements with a specific key (public member function )
  • upper_bound: Return iterator to upper bound (public member function )
  • lower_bound: Return iterator to lower bound (public member function )
  • equal_range: Get range of equal elements (public member function )

Allocator:

  • get_allocator: Get allocator (public member function )

Code Example

#include <iostream>
#include <map> using namespace std; bool fncomp( char lhs, char rhs )
{ return lhs < rhs; } struct classcomp{
bool operator() (const char& lhs, const char& rhs)
{ return lhs < rhs; }
}; int main(int argc, char **argv)
{
map<char,int> first1; first1['a'] = 10; first1['b'] = 20;
first1['c'] = 30; first1['d'] = 40; map<char,int> first2( first1.begin(),first1.end() );
map<char,int> first3( first2 ); map<char,int, classcomp> first4; ///< class as Compare /** function pointer as Compare */
bool(*fn_pt)(char,char) = fncomp;
map<char,int,bool(*)(char,char)> first5(fn_pt); map<char,int> second;
second.emplace('x', 100);
second.emplace('y', 200);
second.emplace('z', 300);
cout << '\n';
for(auto &x:second) cout << x.first << ":" << x.second << '\t'; auto it = second.end();
it = second.emplace_hint(it, 'b', 20);
second.emplace_hint(it, 'a', 10);
second.emplace_hint(it, 'c', 30);
cout << '\n';
for(auto &x:second) cout << x.first << ":" << x.second << '\t'; map<char,int> third;
/** 获取key 比较器 */
map<char,int>::key_compare third_comp = third.key_comp(); third['a'] = 100; third['b'] = 200;
third['c'] = 300; third['d'] = 400;
third['e'] = 500; third['f'] = 600; char dCh = 'd';
it = third.begin(); cout << '\n';
do{
cout << it->first << ":" << it->second << '\t';
}while( third_comp( (*it++).first, dCh ) ); pair<char,int> dValue = *third.rbegin(); it = third.begin();
cout << '\n';
do{
cout << it->first << ":" << it->second << '\t';
}while( third.value_comp()( *it++, dValue ) ); it = third.find('b');
if( it != third.end() )
third.erase(it); cout << '\n';
for( char cIndex = 'a'; cIndex < 'z'; cIndex++ )
{
cout << cIndex;
/** key == cIndex count */
if( third.count(cIndex) > 0 )
cout << " has \n";
else
cout << " not has.\n";
} auto itlow = third.lower_bound('c'); ///< itlow points to c
auto itup = third.upper_bound('e'); ///< itup points to f (not e)
third.erase(itlow,itup);
cout << '\n';
for(auto &x:third) cout << x.first << ":" << x.second << '\t'; map<char,int> four; four['a'] = 10; four['b'] = 20;
four['c'] = 30; four['d'] = 40;
four['e'] = 50; four['f'] = 60; pair< map<char,int>::iterator, map<char,int>::iterator > ret;
ret = four.equal_range('b'); cout << "\n lower bound points to:"
<< ret.first->first << ":" << ret.first->second; cout << "\n upper bound points to: "
<< ret.second->first << ":" << ret.second->second; return 0;
}

Reference

cplusplus


C++ std::map的更多相关文章

  1. std::map用法

    STL是标准C++系统的一组模板类,使用STL模板类最大的好处就是在各种C++编译器上都通用.    在STL模板类中,用于线性数据存储管理的类主要有vector, list, map 等等.本文主要 ...

  2. C++ std::map::erase用法及其陷阱

    1.引入: STL的map中有一个erase方法用来从一个map中删除制定的节点 eg: map<string,string> mapTest; typedef map<string ...

  3. std::map

    1.例: map<int,string> m_mapTest; m_mapTest.insert(make_pair(1,"kong")); m_mapTest.ins ...

  4. std::map的clear()没有用?

    昨天晚上,我徒弟跑过来讲,他的程序的内存占用居高不下,愿意是std::map的clear()没有效果.于是我让他用erase(begin,end); 试试也不行. 代码如下: void release ...

  5. std::map的操作:插入、修改、删除和遍历

    using namespace std; std::map<int,int> m_map; 1.添加 for(int i=0;i<10;i++) { m_map.insert(mak ...

  6. Using std::map with a custom class key

    From: https://www.walletfox.com/course/mapwithcustomclasskey.php If you have ever tried to use a cus ...

  7. Std::map too few template arguments

    在上述的代码中,红色波浪线的部分编译的时候报错: error C2976: 'std::map' : too few template arguments 换成std::map<std::str ...

  8. 使用std::map和std::list存放数据,消耗内存比实际数据大得多

    使用std::map和std::list存放数据,消耗内存比实际数据大得多 场景:项目中需要存储一个结构,如下程序段中TEST_DATA_STRU,结构占24B.但是使用代码中的std::list&l ...

  9. STL之std::set、std::map的lower_bound和upper_bound函数使用说明

    由于在使用std::map时感觉lower_bound和upper_bound函数了解不多,这里整理并记录下相关用法及功能. STL的map.multimap.set.multiset都有三个比较特殊 ...

随机推荐

  1. Vue.js 和 MVVM 小细节

    MVVM 是Model-View-ViewModel 的缩写,它是一种基于前端开发的架构模式,其核心是提供对View 和 ViewModel 的双向数据绑定,这使得ViewModel 的状态改变可以自 ...

  2. Tcp/ip 报文解析

    在编写网络程序时,常使用TCP协议.那么一个tcp包到底由哪些东西构成的呢?其实一个TCP包,首先需要通过IP协议承载,而IP报文,又需要通过以太网传送.下面我们来看看几种协议头的构成 一 .Ethe ...

  3. [NodeJS] 优缺点及适用场景讨论

    概述: NodeJS宣称其目标是“旨在提供一种简单的构建可伸缩网络程序的方法”,那么它的出现是为了解决什么问题呢,它有什么优缺点以及它适用于什么场景呢? 本文就个人使用经验对这些问题进行探讨. 一. ...

  4. nodejs进阶(1)—输出hello world

    下面将带领大家一步步学习nodejs,知道怎么使用nodejs搭建服务器,响应get/post请求,连接数据库等. 搭建服务器页面输出hello world var  http  =  require ...

  5. 使用技术手段限制DBA的危险操作—Oracle Database Vault

    概述 众所周知,在业务高峰期,某些针对Oracle数据库的操作具有很高的风险,比如修改表结构.修改实例参数等等,如果没有充分评估和了解这些操作所带来的影响,这些操作很可能会导致故障,轻则导致应用错误, ...

  6. angular2系列教程(九)Jsonp、URLSearchParams、中断选择数据流

    大家好,今天我们要讲的是http模块的第二部分,主要学习ng2中Jsonp.URLSearchParams.observable中断选择数据流的用法. 例子

  7. ZKWeb网页框架1.2正式发布

    发行日志 https://github.com/zkweb-framework/ZKWeb/blob/master/ReleaseNotes/ReleaseNote.1.2.md 主要改动 更新 ZK ...

  8. .NET平台和C#编程的总结

    第一章   简单认识.NET框架    (1)首先我们得知道 .NET框架具有两个主要组件:公共语言进行时CLR(Common Language Runtime)和框架类库FCL(Framework ...

  9. js闭包 和 prototype

    function test(){ var p=200; function q(){ return p++; } return q; } var s = test(); alert(s()); aler ...

  10. C++整数转字符串的一种方法

    #include <sstream> //ostringstream, ostringstream::str() ostringstream stream; stream << ...