BZOJ4389 : ZYB and Trees
Link-Cut Tree维护。
每个点x维护以下信息:
v:这个点的点权
s:实链上的信息和
st:子树信息和(不包括链上)
sa:子树+链上的信息和
as:所有虚儿子的sa的和
则有
s[x]=v[x]+s[son[x][0]]+s[son[x][1]]
st[x]=as[x]+st[son[x][0]]+st[son[x][1]]
sa[x]=s[x]+st[x]
在access以及link的时候,涉及到虚实边的切换,在这个时候顺带维护一下as即可。
查询以x为根时y子树信息和的时候,将x作为根,然后access(y),此时答案=as[y]+v[y]。
时间复杂度$O(m\log n)$。
#include<cstdio>
#define N 200010
typedef long long ll;
int n,m,i,op,x,y,z;
int f[N],son[N][2],tmp[N],c[N];bool rev[N];
ll v[N],s[N],mx[N],tc[N],ta[N];
ll st[N],sa[N],as[N];
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void umax(ll&a,ll b){if(a<b)a=b;}
inline void swap(int&a,int&b){int c=a;a=b;b=c;}
inline bool isroot(int x){return !f[x]||son[f[x]][0]!=x&&son[f[x]][1]!=x;}
inline void rev1(int x){if(!x)return;swap(son[x][0],son[x][1]);rev[x]^=1;}
inline void col1(int x,ll y){
if(!x)return;
v[x]=mx[x]=tc[x]=y;
s[x]=y*c[x];
ta[x]=0;
sa[x]=s[x]+st[x];
}
inline void add1(int x,ll y){
if(!x)return;
v[x]+=y;
s[x]+=y*c[x];
mx[x]+=y;
if(tc[x])tc[x]+=y;else ta[x]+=y;
sa[x]=s[x]+st[x];
}
inline void pb(int x){
if(rev[x])rev1(son[x][0]),rev1(son[x][1]),rev[x]=0;
if(tc[x])col1(son[x][0],tc[x]),col1(son[x][1],tc[x]),tc[x]=0;
if(ta[x])add1(son[x][0],ta[x]),add1(son[x][1],ta[x]),ta[x]=0;
}
inline void up(int x){
s[x]=mx[x]=v[x];c[x]=1;
st[x]=as[x];
for(int i=0;i<2;i++){
int y=son[x][i];
if(y){
c[x]+=c[y];
s[x]+=s[y];
umax(mx[x],mx[y]);
st[x]+=st[y];
}
}
sa[x]=s[x]+st[x];
}
inline void rotate(int x){
int y=f[x],w=son[y][1]==x;
son[y][w]=son[x][w^1];
if(son[x][w^1])f[son[x][w^1]]=y;
if(f[y]){
int z=f[y];
if(son[z][0]==y)son[z][0]=x;else if(son[z][1]==y)son[z][1]=x;
}
f[x]=f[y];f[y]=x;son[x][w^1]=y;up(y);
}
inline void splay(int x){
int s=1,i=x,y;tmp[1]=i;
while(!isroot(i))tmp[++s]=i=f[i];
while(s)pb(tmp[s--]);
while(!isroot(x)){
y=f[x];
if(!isroot(y)){if((son[f[y]][0]==y)^(son[y][0]==x))rotate(x);else rotate(y);}
rotate(x);
}
up(x);
}
inline void access(int x){
for(int y=0;x;y=x,x=f[x]){
splay(x);
if(son[x][1])as[x]+=sa[son[x][1]];
if(son[x][1]=y)as[x]-=sa[y];
up(x);
}
}
inline void makeroot(int x){access(x);splay(x);rev1(x);}
inline void link(int x,int y){
makeroot(x);
makeroot(y);
as[y]+=sa[x];
f[x]=y;
access(x);
}
inline void cutf(int x){access(x);splay(x);f[son[x][0]]=0;son[x][0]=0;up(x);}
inline void cut(int x,int y){makeroot(x);cutf(y);}
inline void col(int x,int y,int z){makeroot(x);access(y);splay(y);col1(y,z);}
inline void add(int x,int y,int z){makeroot(x);access(y);splay(y);add1(y,z);}
inline ll chainsum(int x,int y){makeroot(x);access(y);splay(y);return s[y];}
inline ll chainmax(int x,int y){makeroot(x);access(y);splay(y);return mx[y];}
inline ll subtreesum(int x,int y){makeroot(x);access(y);splay(y);return as[y]+v[y];}
int main(){
read(n);
for(i=1;i<=n;i++)read(x),v[i]=s[i]=mx[i]=sa[i]=x,c[i]=1;
for(i=2;i<=n;i++)read(x),link(x,i);
read(m);
while(m--){
read(op),read(x),read(y);
if(op==1)read(z),add(x,y,z);
if(op==2)read(z),col(x,y,z);
if(op==3)printf("%lld\n",subtreesum(x,y));
if(op==4)printf("%lld\n",chainmax(x,y));
if(op==5)printf("%lld\n",chainsum(x,y));
if(op==6)link(x,y);
if(op==7)cut(x,y);
}
return 0;
}
BZOJ4389 : ZYB and Trees的更多相关文章
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- [C#] C# 知识回顾 - 表达式树 Expression Trees
C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达 ...
- hdu2848 Visible Trees (容斥原理)
题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...
- [LeetCode] Minimum Height Trees 最小高度树
For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...
- [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- 2 Unique Binary Search Trees II_Leetcode
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- 线段树 - ZYB's Premutation
ZYB has a premutation P,but he only remeber the reverse log of each prefix of the premutation,now he ...
- Finger Trees: A Simple General-purpose Data Structure
http://staff.city.ac.uk/~ross/papers/FingerTree.html Summary We present 2-3 finger trees, a function ...
随机推荐
- 高流量站点NGINX与PHP-fpm配置优化
导读 使用Nginx搭配PHP已有7年的经历,这份经历让我们学会如何为高流量站点优化NGINX和PHP-fpm配置. 以下正是这方面的一些提示和建议: 1. 将TCP切换为UNIX域套接字 1. 将T ...
- 2d背景循环
using UnityEngine; using System.Collections; /// <summary> /// 2d背景循环滚动 /// </summary> p ...
- Xcode 5.0.2 下载地址
下载地址:http://adcdownload.apple.com/Developer_Tools/xcode_5.0.2/xcode_5.0.2.dmg command_line_tools_os_ ...
- MFC 最大化 的时候控件 按比例变大
在dlg类头文件中声明CPoint Old; 在BEGIN_MESSAGE_MAP()和END_MESSAGE_MAP()声明一个映射:ON_WM_SIZE() 这样以后就可以在M_SIZE事件的时候 ...
- Coursera台大机器学习技法课程笔记02-Dual Support Vector Machine
这节课讲的是SVM的对偶问题,比较精彩的部分:为何要使用拉格朗日乘子以及如何进行对偶变换. 参考:http://www.cnblogs.com/bourneli/p/4199990.html http ...
- Linux lsof详解
简介 lsof(list open files)是一个列出当前系统打开文件的工具.在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件.所以如传输控 ...
- 以Python角度学习Javascript(一)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAO4AAADZCAIAAACo85tgAAAgAElEQVR4Aey9SdAs13XnV/P8jW8e8D ...
- Android中自定义Activity和Dialog的位置大小背景和透明度等demo
1.自定义Activity显示样式 先在res/values下建colors.xml文件,写入: <?xml version="1.0" encoding="utf ...
- (部署新java程序,程序报错,需copy的一个包)——java使用siger 获取服务器硬件信息
mcat-siger.sh 查看是否安装siger rsync -aPuv /usr/lib64/libsigar-amd64-linux.so $i:/usr/lib64/ java使用siger ...
- 什么是iis服务器
IS 是Internet Information Server的缩写,它是微软公司主推的服务器,最新的版本是Windows2003里面包含的IIS 6.0,IIS与WindowNT Server完全集 ...