正题

题目链接:https://www.luogu.com.cn/problem/AT2305


题目大意

\(n\)个数字两个人进行博弈,每个人的操作为

  • 选择一个大于1的数字减一
  • 之后所有数字除以所有数字的\(gcd\)

无法操作者败,保证初始所有数字互质

求是否先手必胜

\(1\leq n\leq 10^5\)


解题思路

好妙的题目,先不考虑除\(gcd\)的话,那么就是考虑\(\sum_{i=1}^n(a_i-1)\)的奇偶性。

假设目前为奇状态,那么先手的目的显然是要保持这个奇数状态,注意到如果减去后除以的是一个奇数那么状态显然后手无法改变,所以只要保证序列中有奇数即可,因为如果要有偶数那么就可以减去这个偶数变成奇数先手显然可以保持状态不变。

如果目前为偶状态,那么先手的目前就是要减去后任然是偶状态,那么只有可能除以一个偶数,也就是要让所有的数字都变成偶数。如果奇数个数大于\(1\)显然不可行,否则减去这个\(1\)后进行一个子任务的博弈即可。

最多这样\(log\ a_i\)次所以时间复杂度\(O(n\log^2 a_i)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5+10;
int n,a[N];
int main()
{
scanf("%d",&n);
bool k=1,one=0;
int s=0,z=0;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
s+=a[i]-1;z+=(a[i]&1);
one|=(a[i]==1);
}
while(1){
if(s&1)return puts(k?"First":"Second")&0;
if(one)return puts(k?"Second":"First")&0;
if(z==1){
for(int i=1;i<=n;i++)
if(a[i]&1){a[i]--;break;}
int d=0;z=one=s=0;
for(int i=1;i<=n;i++)d=__gcd(a[i],d);
for(int i=1;i<=n;i++){
a[i]/=d;s+=a[i]-1;
z+=(a[i]&1);one|=(a[i]==1);
}
k=!k;
}
else return puts(k?"Second":"First")&0;
}
return 0;
}

AT2305-[AGC010D]Decrementing【博弈论】的更多相关文章

  1. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  2. NOIp2018模拟赛三十六

    好久没打模拟赛了...今天一样是两道国集,一道bzoj题 成绩:13+0+95=108 A题开始看错题了...导致样例都没看懂,结果xfz提醒我后我理解了一个我自认为正确的题意(事实证明我和xfz都错 ...

  3. 【AGC010D】Decrementing

    Solution 日常博弈论做不出来. 首先,数值全部为1的局面先手必败. 在接下来的过程中,我们只关注那些大于1的数值. 按照官方题解的思路,首先想一个简化版的问题:没有除的操作,其余相同.那么局面 ...

  4. IT人生知识分享:博弈论的理性思维

    背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...

  5. [poj2348]Euclid's Game(博弈论+gcd)

    Euclid's Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9033   Accepted: 3695 Des ...

  6. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  7. TYVJ博弈论

    一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140  飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...

  8. Codeforces 549C. The Game Of Parity[博弈论]

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. 【POJ】2234 Matches Game(博弈论)

    http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论 ...

随机推荐

  1. 安装 iperf和服务器之间测速

    安装 # https://downloads.es.net/pub/iperf/iperf-3.1.3.tar.gz wget https://iperf.fr/download/source/ipe ...

  2. js判断对象的某个属性是否存在

    参考:https://www.jb51.net/article/141994.htm 原始数据, [ {"name":"向阳镇","id": ...

  3. C#---OleDbHelper

    /// <summary> /// OleDbServer数据访问帮助类 /// </summary> public sealed class OleDbHelper { pu ...

  4. axios 请求数据跳转页面报'$router' of undefined问题

    代码: this.$axios.post("/auth", { 'username': this.username, 'password': this.password }).th ...

  5. Django中的增删改查

    1.model 假设我们的model如下: 某个JobType下有很多Job. class JobType(models.Model): name = models.CharField(max_len ...

  6. 第一章 Net 5.0 快速开发框架 YC.Boilerplate--框架介绍

    YC.Boilerplate 框架介绍 YC.Boilerplate 是一套快速开发框架,采用当下流行的前后端分离开发模式,前端 采用VUE.后端采用Net 5.0:框架实现了 多租户.动态webAp ...

  7. 及上一篇linux安装mysql的说明

    mysql8.0安全策略 1 密码规定:数字英文大小写加特殊符号组成(可以不按照规则,详情去百度设置) 2. mysql数据库用户密码字段不再是password 而是authentication_st ...

  8. vue3.0入门(五):vite构建vue项目

    使用vite构建项目步骤 安装node,cmd输入:node -v验证是否安装成功:一般node安装后会自动安装npm,cmd输入:npm -v验证是否安装成功 选择一个文件夹作为项目文件夹,搜索框输 ...

  9. 快速排序(C++)

    快速排序 快速排序是面试中经常问到的排序算法 基本思想:通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小, 则可分别对这两部分记录继续进行排序,以达到整个序 ...

  10. Python安装环境配置和多版本共存

    Python安装环境配置和多版本共存 1.环境变量配置: (1) 右键点击"计算机",然后点击"属性" (2) 然后点击"高级系统设置" ( ...