AT2305-[AGC010D]Decrementing【博弈论】
正题
题目链接:https://www.luogu.com.cn/problem/AT2305
题目大意
\(n\)个数字两个人进行博弈,每个人的操作为
- 选择一个大于1的数字减一
- 之后所有数字除以所有数字的\(gcd\)
无法操作者败,保证初始所有数字互质
求是否先手必胜
\(1\leq n\leq 10^5\)
解题思路
好妙的题目,先不考虑除\(gcd\)的话,那么就是考虑\(\sum_{i=1}^n(a_i-1)\)的奇偶性。
假设目前为奇状态,那么先手的目的显然是要保持这个奇数状态,注意到如果减去后除以的是一个奇数那么状态显然后手无法改变,所以只要保证序列中有奇数即可,因为如果要有偶数那么就可以减去这个偶数变成奇数先手显然可以保持状态不变。
如果目前为偶状态,那么先手的目前就是要减去后任然是偶状态,那么只有可能除以一个偶数,也就是要让所有的数字都变成偶数。如果奇数个数大于\(1\)显然不可行,否则减去这个\(1\)后进行一个子任务的博弈即可。
最多这样\(log\ a_i\)次所以时间复杂度\(O(n\log^2 a_i)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5+10;
int n,a[N];
int main()
{
scanf("%d",&n);
bool k=1,one=0;
int s=0,z=0;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
s+=a[i]-1;z+=(a[i]&1);
one|=(a[i]==1);
}
while(1){
if(s&1)return puts(k?"First":"Second")&0;
if(one)return puts(k?"Second":"First")&0;
if(z==1){
for(int i=1;i<=n;i++)
if(a[i]&1){a[i]--;break;}
int d=0;z=one=s=0;
for(int i=1;i<=n;i++)d=__gcd(a[i],d);
for(int i=1;i<=n;i++){
a[i]/=d;s+=a[i]-1;
z+=(a[i]&1);one|=(a[i]==1);
}
k=!k;
}
else return puts(k?"Second":"First")&0;
}
return 0;
}
AT2305-[AGC010D]Decrementing【博弈论】的更多相关文章
- AtCoder刷题记录
构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...
- NOIp2018模拟赛三十六
好久没打模拟赛了...今天一样是两道国集,一道bzoj题 成绩:13+0+95=108 A题开始看错题了...导致样例都没看懂,结果xfz提醒我后我理解了一个我自认为正确的题意(事实证明我和xfz都错 ...
- 【AGC010D】Decrementing
Solution 日常博弈论做不出来. 首先,数值全部为1的局面先手必败. 在接下来的过程中,我们只关注那些大于1的数值. 按照官方题解的思路,首先想一个简化版的问题:没有除的操作,其余相同.那么局面 ...
- IT人生知识分享:博弈论的理性思维
背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...
- [poj2348]Euclid's Game(博弈论+gcd)
Euclid's Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9033 Accepted: 3695 Des ...
- 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...
- TYVJ博弈论
一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140 飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...
- Codeforces 549C. The Game Of Parity[博弈论]
C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...
- 【POJ】2234 Matches Game(博弈论)
http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论 ...
随机推荐
- 6、二进制安装K8s之部署kubectl
二进制安装K8s之部署kubectl 我们把k8s-master 也设置成node,所以先master上面部署node,在其他机器上部署node也适用,更换名称即可. 1.在所有worker node ...
- 【linux】tail 命令详解
转自:https://www.cnblogs.com/fps2tao/p/7698224.html Linux命令:显示文件结尾 Head/Tail head 与 tail 就像它的名字一样的浅显易懂 ...
- C#多线程---Event类实现线程同步
一.简介 我们使用类(.net Framework中的类,如 AutoResetEvent, Semaphore类等)的方法来实现线程同步的时候,其实内部是调用操作系统的内核对象来实现的线程同步. S ...
- 互斥锁(Lock)
转载至:https://www.cnblogs.com/dolphin0520/p/3923167.html 一.synchronized的缺陷 synchronized是java中的一个关键字,也就 ...
- Jemeter压力测试
Jmeter教程 简单的压力测试 Jmeter是一个非常好用的压力测试工具. Jmeter用来做轻量级的压力测试,非常合适,只需要十几分钟,就能把压力测试需要的脚本写好. 转载自小坦克:https: ...
- mzy git学习,分支冲突,以及冲突解决(五)
冲突解决: 先尝试制造冲突: 首先我:git checkout -b mzy 创建一个mzy的分支 然后在其中修改readme.txt文件,随便加上一点东西. vim readme.txt wri ...
- 《深入理解java虚拟机》第3版笔记3
第3章 垃圾收集器与内存分配策略 可达性分析算法 在Java技术体系里面,固定可作为GC Roots的对象包括以下几种: 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使 ...
- Go: 复合数据类型slice
slice slice 表示用于相同类型元素的可变长度的序列. slice有三个属性:指针.长度和容量. 指针:slice存储数据的内部结构是数组,指针指向的是数组的地址 长度:保存slice中的元素 ...
- Faiss使用多线程出现的性能问题
Faiss使用多线程出现的性能问题 faiss在增加CPU的情况下,反而出现效率低下的问题. 从理论上看,作为一个CPU/GPU计算型的应用,更多的核意味着更大的计算吞吐能力,性能只会越来越好才是. ...
- 高德地图——2D转换3D
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script ty ...