正题

题目链接:https://www.luogu.com.cn/problem/P3180


题目大意

\(n\)个点\(m\)条边的一个仙人掌,有点权。

\(Q\)次询问给出\(op,x,y\),封闭\(1\)到\(x\)号点的所有简单路径后\(x\)能到达的点的点权中,小于\(y\)且出现次数为奇数/偶数的权值数目。

\(1\leq n,Q\leq 10^5,1\leq m\leq 1.5\times 10^5,0\leq y,w_i\leq 10^6\)


解题思路

梦魇融合怪是吧

先对仙人掌建立一个圆方树,以\(1\)为根,那么能到达的就变为了子树的点权了。然后转换到\(dfs\)序的区间询问问题。

后面那个就和P4867-Gty的二逼妹子序列差不多了,考虑莫队,然后平衡结合的话用分块来维护区间和就好了。

时间复杂度\(O(n\sqrt y)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
#include<cmath>
using namespace std;
const int N=1e6+10,M=1100;
struct node{
int l,r,lim,k,id;
}q[N];
int n,m,Q,T,dfc,dfn[N],low[N],rfn[N],pos[N],c[N];
int w[N],ans[N],L[M],R[M],v[2][N],sum[2][M];
vector<int> G[N],H[N];stack<int> s;
void tarjan(int x){
dfn[x]=low[x]=++dfc;s.push(x);
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
if(low[y]==dfn[x]){
++n;int k;
do{
k=s.top();s.pop();
H[n].push_back(k);
H[k].push_back(n);
}while(k!=y);
H[n].push_back(x);
H[x].push_back(n);
}
}
else low[x]=min(low[x],dfn[y]);
}
return;
}
void dfs(int x,int fa){
dfn[++dfc]=x;rfn[x]=dfc;
for(int i=0;i<H[x].size();i++){
int y=H[x][i];
if(y==fa)continue;
dfs(y,x);
}
low[x]=dfc;
}
bool cmp(node x,node y){
if(x.l/T==y.l/T)return x.r<y.r;
return x.l<y.l;
}
void Add(int x,int f){
if(c[x])v[c[x]&1][x]--,sum[c[x]&1][pos[x]]--;
c[x]+=f;
if(c[x])v[c[x]&1][x]++,sum[c[x]&1][pos[x]]++;
return;
}
int Ask(int k,int l,int r){
if(!r)return 0;
int x=pos[l],y=pos[r],ans=0;
if(x==y){
for(int i=l;i<=r;i++)
ans+=v[k][i];
return ans;
}
for(int i=l;i<=R[x];i++)ans+=v[k][i];
for(int i=L[y];i<=r;i++)ans+=v[k][i];
for(int i=x+1;i<y;i++)ans+=sum[k][i];
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&w[i]);
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
tarjan(1);dfc=0;
dfs(1,1);T=sqrt(1e6);
for(int i=1;i<=T;i++)L[i]=R[i-1]+1,R[i]=i*T;
if(R[T]!=1e6)++T,L[T]=R[T-1]+1,R[T]=n;
for(int i=1;i<=T;i++)
for(int j=L[i];j<=R[i];j++)pos[j]=i;
scanf("%d",&Q);
for(int i=1;i<=Q;i++){
int x;
scanf("%d%d%d",&q[i].k,&x,&q[i].lim);
q[i].l=rfn[x];q[i].r=low[x];q[i].id=i;
}
sort(q+1,q+1+Q,cmp);
int l=1,r=0;
for(int i=1;i<=Q;i++){
while(l<q[i].l)Add(w[dfn[l]],-1),l++;
while(l>q[i].l)l--,Add(w[dfn[l]],1);
while(r<q[i].r)r++,Add(w[dfn[r]],1);
while(r>q[i].r)Add(w[dfn[r]],-1),r--;
ans[q[i].id]=Ask(q[i].k,1,q[i].lim);
}
for(int i=1;i<=Q;i++)
printf("%d\n",ans[i]);
return 0;
}

P3180-[HAOI2016]地图【圆方树,莫队,分块】的更多相关文章

  1. 【CodeForces】700 D. Huffman Coding on Segment 哈夫曼树+莫队+分块

    [题目]D. Huffman Coding on Segment [题意]给定n个数字,m次询问区间[l,r]的数字的哈夫曼编码总长.1<=n,m,ai<=10^5. [算法]哈夫曼树+莫 ...

  2. luogu P3180 [HAOI2016]地图 仙人掌 线段树合并 圆方树

    LINK:地图 考虑如果是一棵树怎么做 权值可以离散 那么可以直接利用dsu on tree+树状数组解决. 当然 也可以使用莫队 不过前缀和比较难以维护 外面套个树状数组又带了个log 套分块然后就 ...

  3. [BZOJ3236][AHOI2013]作业:树套树/莫队+分块

    分析 第一问随便搞,直接说第二问. 令原数列为\(seq\),\(pre_i\)为\(seq_i\)这个值上一个出现的位置,于是可以简化询问条件为: \(l \leq i \leq r\) \(a \ ...

  4. P3180 [HAOI2016]地图

    P3180 [HAOI2016]地图 显然,这是一个仙人掌图 inline void tarjan(LL u,LL fa){ low[u]=dfn[u]=++tot, pre[tot]=u; for( ...

  5. BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...

  6. BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  7. 【BZOJ5329】【SDOI2018】战略游戏(圆方树,虚树)

    [BZOJ5329][SDOI2018]战略游戏(圆方树,虚树) 题面 BZOJ 洛谷 Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战 ...

  8. [JZOJ 5909] [NOIP2018模拟10.16] 跑商(paoshang) 解题报告 (圆方树)

    题目链接: https://jzoj.net/senior/#contest/show/2529/2 题目: 题目背景:尊者神高达很穷,所以他需要跑商来赚钱题目描述:基三的地图可以看做 n 个城市,m ...

  9. 圆方树简介(UOJ30:CF Round #278 Tourists)

    我写这篇博客的原因 证明我也是学过圆方树的 顺便存存代码 前置技能 双联通分量:点双 然后就没辣 圆方树 建立 新建一个图 定义原图中的所有点为圆点 对于每个点双联通分量(只有两个点的也算) 建立一个 ...

随机推荐

  1. .NET Core:在ASP.NET Core WebApi中使用Cookie

    一.Cookie的作用 Cookie通常用来存储有关用户信息的一条数据,可以用来标识登录用户,Cookie存储在客户端的浏览器上.在大多数浏览器中,每个Cookie都存储为一个小文件.Cookie表示 ...

  2. 从0开始搭建一个IoC容器(C#版)

    网址:https://blog.csdn.net/wangyahua1234/article/details/100619695 目录 1. IoC简介 2. Tiny版IoC的功能 3. Tiny版 ...

  3. jQuery中的样式(七):addClass()、removeClass()、toggleClass()、hasClass()、css()、width()、height()等

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <hea ...

  4. 简析时序数据库 InfluxDB

    时序数据基础 时序数据特点 时序数据TimeSeries是一连串随时间推移而发生变化的相关事件. 以下图的 CPU 监控数据为例,同个 IP 的相关监控数据组成了一条时序数据,不相关数据则分布在不同的 ...

  5. Golang slice作为函数参数

    slice底层其实是一个结构体,len.cap.array分别表示长度.容量.底层数组的地址,当slice作为函数的参数传递的时候,跟普通结构体的传递是没有区别的:如果直接传slice,实参slice ...

  6. windows下mysql5.7.17配置

    1.官网下载mysql5.7.17 64位 https://dev.mysql.com/downloads/mysql/ 2.安装完解压到E盘主目录下,改文件名为mysql 3.配置环境变量 我的电脑 ...

  7. 整理之BroadcaseReceiver

    广播的分类 有序广播:按接收器优先级从高到低接受消息,一次只能有一个接收器处理消息.中途可以被截断. 无序广播:所有接收器同时接受消息并处理,无法拦截. 本地广播:只能在本应用内传播的无需广播.上面两 ...

  8. Linux定时任务(详细)

    Linux定时任务一.首先查看是否安装了crontab[root@master ~]# rpm -qa |grep crontabcrontabs-1.11-6.20121102git.el7.noa ...

  9. 微信小程序基础知识笔记

    微信小程序笔记 文件构成 全局文件 app.json 小程序全局配置文件,必要,自动生成 app.js 小程序入口JS文件,一般只需申明全局变量.处理生命周期以及版本升级即可,必要 app.wxss ...

  10. Mybatis-plus<二>通用CRUD,分页

    Mybatis-plus<二>通用CRUD,分页 与博客Mybatis-plus<一>为同一个Springboot项目. Demo GitHub下载地址:https://git ...