正题

题目链接:https://www.luogu.com.cn/problem/P3180


题目大意

\(n\)个点\(m\)条边的一个仙人掌,有点权。

\(Q\)次询问给出\(op,x,y\),封闭\(1\)到\(x\)号点的所有简单路径后\(x\)能到达的点的点权中,小于\(y\)且出现次数为奇数/偶数的权值数目。

\(1\leq n,Q\leq 10^5,1\leq m\leq 1.5\times 10^5,0\leq y,w_i\leq 10^6\)


解题思路

梦魇融合怪是吧

先对仙人掌建立一个圆方树,以\(1\)为根,那么能到达的就变为了子树的点权了。然后转换到\(dfs\)序的区间询问问题。

后面那个就和P4867-Gty的二逼妹子序列差不多了,考虑莫队,然后平衡结合的话用分块来维护区间和就好了。

时间复杂度\(O(n\sqrt y)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
#include<cmath>
using namespace std;
const int N=1e6+10,M=1100;
struct node{
int l,r,lim,k,id;
}q[N];
int n,m,Q,T,dfc,dfn[N],low[N],rfn[N],pos[N],c[N];
int w[N],ans[N],L[M],R[M],v[2][N],sum[2][M];
vector<int> G[N],H[N];stack<int> s;
void tarjan(int x){
dfn[x]=low[x]=++dfc;s.push(x);
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
if(low[y]==dfn[x]){
++n;int k;
do{
k=s.top();s.pop();
H[n].push_back(k);
H[k].push_back(n);
}while(k!=y);
H[n].push_back(x);
H[x].push_back(n);
}
}
else low[x]=min(low[x],dfn[y]);
}
return;
}
void dfs(int x,int fa){
dfn[++dfc]=x;rfn[x]=dfc;
for(int i=0;i<H[x].size();i++){
int y=H[x][i];
if(y==fa)continue;
dfs(y,x);
}
low[x]=dfc;
}
bool cmp(node x,node y){
if(x.l/T==y.l/T)return x.r<y.r;
return x.l<y.l;
}
void Add(int x,int f){
if(c[x])v[c[x]&1][x]--,sum[c[x]&1][pos[x]]--;
c[x]+=f;
if(c[x])v[c[x]&1][x]++,sum[c[x]&1][pos[x]]++;
return;
}
int Ask(int k,int l,int r){
if(!r)return 0;
int x=pos[l],y=pos[r],ans=0;
if(x==y){
for(int i=l;i<=r;i++)
ans+=v[k][i];
return ans;
}
for(int i=l;i<=R[x];i++)ans+=v[k][i];
for(int i=L[y];i<=r;i++)ans+=v[k][i];
for(int i=x+1;i<y;i++)ans+=sum[k][i];
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&w[i]);
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
tarjan(1);dfc=0;
dfs(1,1);T=sqrt(1e6);
for(int i=1;i<=T;i++)L[i]=R[i-1]+1,R[i]=i*T;
if(R[T]!=1e6)++T,L[T]=R[T-1]+1,R[T]=n;
for(int i=1;i<=T;i++)
for(int j=L[i];j<=R[i];j++)pos[j]=i;
scanf("%d",&Q);
for(int i=1;i<=Q;i++){
int x;
scanf("%d%d%d",&q[i].k,&x,&q[i].lim);
q[i].l=rfn[x];q[i].r=low[x];q[i].id=i;
}
sort(q+1,q+1+Q,cmp);
int l=1,r=0;
for(int i=1;i<=Q;i++){
while(l<q[i].l)Add(w[dfn[l]],-1),l++;
while(l>q[i].l)l--,Add(w[dfn[l]],1);
while(r<q[i].r)r++,Add(w[dfn[r]],1);
while(r>q[i].r)Add(w[dfn[r]],-1),r--;
ans[q[i].id]=Ask(q[i].k,1,q[i].lim);
}
for(int i=1;i<=Q;i++)
printf("%d\n",ans[i]);
return 0;
}

P3180-[HAOI2016]地图【圆方树,莫队,分块】的更多相关文章

  1. 【CodeForces】700 D. Huffman Coding on Segment 哈夫曼树+莫队+分块

    [题目]D. Huffman Coding on Segment [题意]给定n个数字,m次询问区间[l,r]的数字的哈夫曼编码总长.1<=n,m,ai<=10^5. [算法]哈夫曼树+莫 ...

  2. luogu P3180 [HAOI2016]地图 仙人掌 线段树合并 圆方树

    LINK:地图 考虑如果是一棵树怎么做 权值可以离散 那么可以直接利用dsu on tree+树状数组解决. 当然 也可以使用莫队 不过前缀和比较难以维护 外面套个树状数组又带了个log 套分块然后就 ...

  3. [BZOJ3236][AHOI2013]作业:树套树/莫队+分块

    分析 第一问随便搞,直接说第二问. 令原数列为\(seq\),\(pre_i\)为\(seq_i\)这个值上一个出现的位置,于是可以简化询问条件为: \(l \leq i \leq r\) \(a \ ...

  4. P3180 [HAOI2016]地图

    P3180 [HAOI2016]地图 显然,这是一个仙人掌图 inline void tarjan(LL u,LL fa){ low[u]=dfn[u]=++tot, pre[tot]=u; for( ...

  5. BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...

  6. BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  7. 【BZOJ5329】【SDOI2018】战略游戏(圆方树,虚树)

    [BZOJ5329][SDOI2018]战略游戏(圆方树,虚树) 题面 BZOJ 洛谷 Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战 ...

  8. [JZOJ 5909] [NOIP2018模拟10.16] 跑商(paoshang) 解题报告 (圆方树)

    题目链接: https://jzoj.net/senior/#contest/show/2529/2 题目: 题目背景:尊者神高达很穷,所以他需要跑商来赚钱题目描述:基三的地图可以看做 n 个城市,m ...

  9. 圆方树简介(UOJ30:CF Round #278 Tourists)

    我写这篇博客的原因 证明我也是学过圆方树的 顺便存存代码 前置技能 双联通分量:点双 然后就没辣 圆方树 建立 新建一个图 定义原图中的所有点为圆点 对于每个点双联通分量(只有两个点的也算) 建立一个 ...

随机推荐

  1. Hibernate5 入门之SessionFactory对象的创建

    hibernate5创建SessionFactory不同于hibernate4和hibernate3,下面是代码示例. package top.scorpion.util; import org.hi ...

  2. FileUtils常用方法 - commons-io常用工具类

    FileUtils常用常量 public static final long ONE_KB = 1024; public static final BigInteger ONE_KB_BI = Big ...

  3. Go版本依赖--伪版本

    目录 1.简介 2. 什么是伪版本 3. 伪版本风格 4. 如何获取伪版本 1.简介 在go.mod中通常使用语义化版本来标记依赖,比如v1.2.3.v0.1.5等.因为go.mod文件通常是go命令 ...

  4. MySQL-存储引擎-1

    一.MySQL存储引擎 mysql> create table country( -> country_id smallint unsigned not null auto_increme ...

  5. k8s笔记0528-基于KUBERNETES构建企业容器云手动部署集群记录-2

    三.ETCD集群部署 类似于走zookeeper集群分布式协调服务,可做以key v形式存储在ETCD中. 官方链接:https://github.com/coreos/etcd 分布式kv存储,为分 ...

  6. Servlet学习笔记(三)之HttpServletResponse

    init() 方法中参数 ServletConfig 对象使用 通过ServletConfig 获得 ServletContext对象 使用 HttpServletRequest 与HttpServl ...

  7. Redis的安装、基本使用以及与SpringBoot的整合

    1.概述 Redis 是现在很流行的一个 NoSql 数据库,每秒读取可以达到10万次,能够将数据持久化,支持多种数据结构,容灾性强,易扩展,常用于项目的缓存中间件. 今天我们就来聊聊关于Redis的 ...

  8. MongoDB(6)- BSON 数据类型

    BSON BSON是一种二进制序列化格式,用于在 MongoDB 中存储文档和进行远程过程调用 跟 JSON 的数据结构很像,但是支持更丰富的数据类型 数据类型 数据类型 序号 别名 备注 Doubl ...

  9. Linux - 设置帮助文件为中文

    前言 当我们执行某个命令的 --h 或者  --help 时,默认输出的都是英文,接下来我们来说下如何将所有帮助文件显示成中文哦! 设置系统默认语言为中文 对应每个shell而言,重启后会变成英文,所 ...

  10. 动态拼接表达式——Expression

    我们在项目中会遇到以下查询需求吗? 比如需要查询出满足以下条件的会员: 条件组一:30-40岁的男性会员 条件组二:20-30岁的女性会员 条件组三:60-80岁性别未知的会员 条件组内是并且关系,但 ...