FoveaBox:细节差别,另一种DenseBox+FPN的Anchor-free方案 | IEEE TIP 2020
作为与FCOS和FSAF同期的Anchor-free论文,FoveaBox在整体结构上也是基于DenseBox加FPN的策略,主要差别在于FoveaBox只使用目标中心区域进行预测且回归预测的是归一化后的偏移值,还有根据目标尺寸选择FPN的多层进行训练,大家可以学习下
来源:晓飞的算法工程笔记 公众号
论文: FoveaBox: Beyound Anchor-Based Object Detection

Introduction

论文认为anchor的使用不一定是最优的搜索目标的方式,且受人眼视网膜中央凹(fovea)的启发:视觉区域的中部有最高的视觉敏锐度,所以提出了anchor-free目标检测方法FoveaBox。

FoveaBox联合预测每个有效位置为目标中心的可能性及其对应目标的尺寸,输出类别置信度以及用以转化目标区域的尺寸信息。如果大家看过很多Anchor-free的检测方案,可能觉得论文的实现方案很常见,的确,其实这篇文章也是Anchor-free井喷初期的作品,整体思路很纯粹,也是很多大佬都想到的思路,在阅读时需要关注以下细节:
- 以目标的中心区域进行分类预测与回归预测
- 将回归预测的是归一化后的偏移值
- 训练时可指定FPN多层同时训练
- 提出特征对齐模块,使用回归的输出来调整分类的输入特征
FoveaBox

Object Occurrence Possibility
给定GT目标框\((x_1, y_1, x_2, y_2)\),将其映射到特征金字塔层\(P_l\):

\(s_l\)为特征层相对于输入的stride,正样本区域\(R^{pos}\)为大致为映射框的缩小版本:

\(\sigma\)为人为设定缩放因子。在训练阶段,正样本区域内的特征点标记为对应的目标类别,其余的区域为负样本区域,特征金字塔每层的输出为\(C\times H\times W\),\(C\)为类别总数。
Scale Assignment
网络的目标是预测目标的边界,直接预测是不稳定的,因为目标尺寸的跨度很大。为此,论文将目标尺寸归为多个区间,对应特征金字塔各层,各层负责特定尺寸范围的预测。给予特征金字塔\(P_3\)到\(P_7\)基础尺寸\(r_l=2^{l+2}\),则层\(l\)负责的目标尺寸范围为:

\(\eta\)为人工设置的参数,用于控制特征金字塔每层的回归尺寸范围,不在该层尺寸范围内的训练目标则忽略。目标可能落到多个层的尺寸范围内,这时使用多层进行训练,多层训练有以下好处:
- 邻接的特征金字塔层通常有类似的语义信息,可同时进行优化。
- 大幅增加每层的训练样本数,使得训练过程更稳定。
Box Prediction
在预测目标尺寸时,FoveaBox直接计算正样本区域\((x,y)\)到目标边界的归一化的偏移值:

公式4先将特征金字塔层的像素映射回输入图片,再进行偏移值的计算,训练采用L1损失函数。
Network Architecture

网络结构如图4所示,主干网络采用特征金字塔的形式,每层接一个预测Head,包含分类分支和回归分支。论文采用较简单的Head结构,使用更复杂的Head可以获得更好的性能。
Feature Alignment

论文提出了特征对齐的trick,主要是对预测Head进行改造,结构如图7所示,
Experiment

与SOTA方法进行对比。
Conclusion
作为与FCOS和FSAF同期的Anchor-free论文,FoveaBox在整体结构上也是基于DenseBox加FPN的策略,主要差别在于FoveaBox只使用目标中心区域进行预测且回归预测的是归一化后的偏移值,还有根据目标尺寸选择FPN的多层进行训练。由于FoveaBox的整体实现方案太纯粹了,与其它Anchor-free方法很像,所以一直投稿到现在才中了,作者也是相当不容易。
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

FoveaBox:细节差别,另一种DenseBox+FPN的Anchor-free方案 | IEEE TIP 2020的更多相关文章
- 几种常见的微服务架构方案简述——ZeroC IceGrid、Spring Cloud、基于消息队列
微服务架构是当前很热门的一个概念,它不是凭空产生的,是技术发展的必然结果.虽然微服务架构没有公认的技术标准和规范草案,但业界已经有一些很有影响力的开源微服务架构平台,架构师可以根据公司的技术实力并结合 ...
- 几种常见的微服务架构方案——ZeroC IceGrid、Spring Cloud、基于消息队列、Docker Swarm
微服务架构是当前很热门的一个概念,它不是凭空产生的,是技术发展的必然结果.虽然微服务架构没有公认的技术标准和规范草案,但业界已经有一些很有影响力的开源微服务架构平台,架构师可以根据公司的技术实力并结合 ...
- 三种主流的Web服务实现方案(REST+SOAP+XML-RPC)简述及比较
目前知道的三种主流的Web服务实现方案为:REST:表象化状态转变 (软件架构风格)SOAP:简单对象访问协议 XML-RPC:远程过程调用协议 下面分别作简单介绍: REST:表征状态转移(Repr ...
- 一种高兼容性的JavaBean序列化方案
在对JavaBean做序列化时,我们可能在某些场景希望前后兼容性好一些.比如所有的javaBean都序列化后保存在数据库,用的时候需要反序列化创建.随着业务的发展,数据模型可能会进行变更,那么原来的数 ...
- Swift 函数做参数和闭包做参数的一个细节差别
函数作参数,示例为传入一个String和一个添加前缀的函数,返回一个添加完前缀的String: func demo(str:String,addPrefix:(String)->String)- ...
- HttpClient三种不同的服务器认证客户端方案
http://blog.csdn.net/i_lovefish/article/details/9816783 HttpClient三种不同的认证方案: Basic, Digest and NTLM. ...
- 分库分表的 9种分布式主键ID 生成方案,挺全乎的
<sharding-jdbc 分库分表的 4种分片策略> 中我们介绍了 sharding-jdbc 4种分片策略的使用场景,可以满足基础的分片功能开发,这篇我们来看看分库分表后,应该如何为 ...
- 几种移动app API调用认证方案浅析
最近做的金融项目,app调用的接口需要做一个身份认证,所以找了下目前API services验证的几种方式.之前翻译的一篇文章--[译]移动API安全终极指南中,主要提出了API服务调用验证的问题,通 ...
- 一种client同步server数据的方案
场景 clientA不定时地把本地数据同步到server上,然后还有一个clientB(app)从server把数据同步下来,汇总展示 clientA数据结构 原始的数据(来自clientA).每条都 ...
随机推荐
- Python 修改AD密码
前提条件: AD 已开启证书服务(最重要的一句话). import ldap3 SERVER = 'adserver' BASEDN = "DC=example,DC=com" U ...
- 人口信息普查系统-JavaWeb-四
今天给大家分享前端人口登记页面,人口查询页面 人口登记 <%@ page language="java" contentType="text/html; chars ...
- 学习Java第1天
今天所做的工作:1.了解Java语言的发展历史 2.安装了Eclipse软件 3.学习了Eclipse的基本使用方法 4.学习了Java基本输出语法 5.成功输出了helloworld 6.学习了Ja ...
- JVM专题1: 类和类加载机制
合集目录 JVM专题1: 类和类加载机制 Java对象的结构 在HotSpot虚拟机中, 对象在内存中存储的布局可以分为3块区域 对象头Header 实例数据Instance Data 对齐填充Pad ...
- RealFormer: 残差式 Attention 层的Transformer 模型
原创作者 | 疯狂的Max 01 背景及动机 Transformer是目前NLP预训练模型的基础模型框架,对Transformer模型结构的改进是当前NLP领域主流的研究方向. Transformer ...
- 洛谷P4859 已经没有什么好害怕的了
因为不存在任意两个数相同,那么设糖果比药片大的组有 \(x\) 个,药片比糖果大的组有 \(y\) 个,那么我们有: \[x + y = n, x - y = k \] 即: \[x = \frac{ ...
- VC 获取多个mac地址
转载请注明来源:https://www.cnblogs.com/hookjc/ #include <IPHlpApi.h>#include <iostream>#pragma ...
- git 下载及更新
转载请注明来源:https://www.cnblogs.com/hookjc/ 在完成了创建之后,GitHub会提示你如何向这个Repository上传代码. 首次上传: Git 本地上传 添加新文 ...
- node.js中的fs.appendFile方法使用说明
方法说明: 该方法以异步的方式将 data 插入到文件里,如果文件不存在会自动创建.data可以是任意字符串或者缓存. 语法: 代码如下: fs.appendFile(filename, data, ...
- 企业级Docker容器镜像仓库Harbor的搭建
Harbor简述 Habor是由VMWare公司开源的容器镜像仓库.事实上,Habor是在Docker Registry上进行了相应的企业级扩展,从而获得了更加广泛的应用,这些新的企业级特性包括:管理 ...