Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting Misclassified Examples[C]. international conference on learning representations, 2020.

@article{wang2020improving,

title={Improving Adversarial Robustness Requires Revisiting Misclassified Examples},

author={Wang, Yisen and Zou, Difan and Yi, Jinfeng and Bailey, James and Ma, Xingjun and Gu, Quanquan},

year={2020}}

作者认为, 错分样本对于提高网络的鲁棒性是很重要的, 为此提出了一个启发于此的新的损失函数.

主要内容

符号

\(h_{\theta}\): 参数为\(\theta\)的神经网络;

\((x,y) \in \mathbb{R}^d \times \{1,\ldots, K\}\): 类别及其标签;

\[\tag{2}
h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)=\underset{k=1, \ldots, K}{\arg \max } \mathbf{p}_{k}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right), \quad \mathbf{p}_{k}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right)=\exp \left(\mathbf{z}_{k}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right)\right) / \sum_{k^{\prime}=1}^{K} \exp \left(\mathbf{z}_{k^{\prime}}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right)\right)
\]

定义正分类样本和误分类样本

\[\mathcal{S}_{h_{\theta}}^+ = \{i : i \in [n], h_{\theta} (x_i)=y_i \} \quad \mathrm{and} \quad \mathcal{S}_{h_{\theta}}^- = \{i : i \in [n], h_{\theta} (x_i) \not =y_i \}.
\]

MART

在所有样本上的鲁棒分类误差:

\[\tag{3}
\mathcal{R}(h_{\theta}) = \frac{1}{n} \sum_{i=1}^n \max_{x_i' \in \mathcal{B}_{\epsilon}(x_i)} \mathbb{1}(h_{\theta}(x_i') \not= y_i),
\]

并定义在错分样本上的鲁棒分类误差

\[\tag{4}
\mathcal{R}^- (h_{\theta}, x_i):= \mathbb{1} (h_{\theta}(\hat{x}_i') \not=y_i) + \mathbb{1}(h_{\theta}(x_i) \not= h_{\theta} (\hat{x}_i'))
\]

其中

\[\tag{5}
\hat{x}_i'=\arg \max_{x_i' \in \mathcal{B}_{\epsilon} (x_i)} \mathbb{1} (h_{\theta} (x_i') \not = y_i).
\]

以及正分样本上的鲁棒分类误差:

\[\tag{6}
\mathcal{R}^+(h_{\theta}, x_i):=\mathbb{1}(h_{\theta}(\hat{x}_i') \not = y_i).
\]

最后, 我们要最小化的是二者的混合误差:

\[\tag{7}
\begin{aligned}
\min _{\boldsymbol{\theta}} \mathcal{R}_{\text {misc }}\left(h_{\boldsymbol{\theta}}\right): &=\frac{1}{n}\left(\sum_{i \in \mathcal{S}_{h}^{+}} \mathcal{R}^{+}\left(h_{\boldsymbol{\theta}}, \mathbf{x}_{i}\right)+\sum_{i \in \mathcal{S}_{\boldsymbol{h}_{\boldsymbol{\theta}}}^{-}} \mathcal{R}^{-}\left(h_{\boldsymbol{\theta}}, \mathbf{x}_{i}\right)\right) \\
&=\frac{1}{n} \sum_{i=1}^{n}\left\{\mathbb{1}\left(h_{\boldsymbol{\theta}}\left(\hat{\mathbf{x}}_{i}^{\prime}\right) \neq y_{i}\right)+\mathbb{1}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right) \neq h_{\boldsymbol{\theta}}\left(\hat{\mathbf{x}}_{i}^{\prime}\right)\right) \cdot \mathbb{1}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right) \neq y_{i}\right)\right\}
\end{aligned}.
\]

为了能够传递梯度, 需要利用一些替代函数"软化"上面的损失函数, 对于\(\mathbb{1}(h_{\theta}(\hat{x}_i')\not = y_i)\)利用BCE损失函数替代

\[\tag{8}
\mathrm{BCE} (p(\hat{x}_i, \theta),y_i)= -\log (p_{y_i} (\hat{x}_i',\theta))- \log (1-\max_{k\not=y_i} p_k(\hat{x}_i',\theta)),
\]

第一项为普通的交叉熵损失, 第二项用于提高分类边界.

对于第二项\(\mathbb{1}(h_{\theta}(x_i)\not=h_{\theta}(\hat{x}_i'))\), 用KL散度作为替代

\[\tag{9}
\mathrm{KL} (p(x_i, \theta)\| p(\hat{x}_i', \theta))=\sum_{k=1}^K p_k(x_i, \theta)\log \frac{p_k(x_i,\theta)}{p_k(\hat{x}_i',\theta)}.
\]

最后一项\(\mathbb{1}(h_{\theta}(x_i) \not =y_i)\)则可用 \(1-p_{y_i}(x_i,\theta)\)来代替.

于是最后的损失函数便是

\[\tag{11}
\mathcal{L}^{\mathrm{MART}}(\theta)= \frac{1}{n} \sum_{i=1}^n \ell(x_i, y_i, \theta),
\]

其中

\[\ell (x_i,y_i,\theta):=\mathrm{BCE}(p(\hat{x}_i', \theta),y_i)+\lambda \cdot \mathrm{KL} (p(x_i,\theta) \|p(\hat{x}_i,\theta)) \cdot (1-p_{y_i}(x_i, \theta)).
\]

IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES的更多相关文章

  1. Improving Adversarial Robustness via Channel-Wise Activation Suppressing

    目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...

  2. Improving Adversarial Robustness Using Proxy Distributions

    目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...

  3. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks

    目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of ...

  4. Second Order Optimization for Adversarial Robustness and Interpretability

    目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustn ...

  5. Certified Adversarial Robustness via Randomized Smoothing

    目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized S ...

  6. Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...

  7. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  8. (转)Is attacking machine learning easier than defending it?

    转自:http://www.cleverhans.io/security/privacy/ml/2017/02/15/why-attacking-machine-learning-is-easier- ...

  9. [C5] Andrew Ng - Structuring Machine Learning Projects

    About this Course You will learn how to build a successful machine learning project. If you aspire t ...

随机推荐

  1. ubantu打开摄像头失败

    摘要-针对ubantu20 sudo apt install v4l-utils v4l2-ctl --list-devices - cv2 install on ubantu20```针对ubant ...

  2. oracle 当月日历的sql

    select max(sun) sun, max(mon) mon, max(tue) tue, max(wed) wed, max(thu) thu, max(fri) fri, max(sat) ...

  3. Dubbo中CompletableFuture异步调用

    使用Future实现异步调用,对于无需获取返回值的操作来说不存在问题,但消费者若需要获取到最终的异步执行结果,则会出现问题:消费者在使用Future的get()方法获取返回值时被阻塞.为了解决这个问题 ...

  4. js中获取url参数

    function getUrlVars() { var vars = [], hash; var hashes = window.location.href.slice(window.location ...

  5. 【C#】【MySQL】C#连接MySQL数据库(一)代码

    C#连接MySQL数据库 准备工作 1.环境安装 安装MySQL For Visual Studio<<点击进入官网下载 第一个要下载安装,第二个下载后将MySQL.data添加到Visu ...

  6. 云原生应用管理,像管理手机APP一样管理企业应用

    我们在使用智能手机的时候,手机APP从应用市场一键安装,安装好即点即用,当有新版本一键升级,如果不想用了长按图标删除,整个过程非常简单,小朋友都能熟练掌握.而对于企业应用,由于结构复杂.可用性要求高. ...

  7. 虎符2021线下赛pwn writeup

    jdt 一个图书管理系统,但并不是常规的堆题.edit和show函数可以越界.edit函数和show函数相互配合泄露libc基地址,将main函数的返回地址覆盖成onegadgets拿shell. f ...

  8. 十年后回到百年前?(Excel技巧集团)

    在单元格里输入日期,有时可以偷懒,比如明年的日期可以输入至少一位的年+横杠(或斜杠)+至少一位的月+横杠(或斜杠)+至少一位的日,也就是"21-1-1",单元格里就会自动显示&qu ...

  9. CF1560D Make a Power of Two 题解

    Content 给定一个整数 \(n\).每次操作你可以做两件事情中的一件: 删去这个数中的一个数位(如果这个数只剩下一位,则可以把它删空). 在这个数的右边添加一个数位. 你可以以任意顺序执行无限次 ...

  10. CF1514A Perfectly Imperfect Array 题解

    Content 给定一个长度为 \(n\) 的序列,问是否存在一个非空子序列,使得这个子序列所有元素的积不是完全平方数. 数据范围:\(t\) 组数据,\(1\leqslant t\leqslant ...