IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES
@article{wang2020improving,
title={Improving Adversarial Robustness Requires Revisiting Misclassified Examples},
author={Wang, Yisen and Zou, Difan and Yi, Jinfeng and Bailey, James and Ma, Xingjun and Gu, Quanquan},
year={2020}}
概
作者认为, 错分样本对于提高网络的鲁棒性是很重要的, 为此提出了一个启发于此的新的损失函数.
主要内容
符号
\(h_{\theta}\): 参数为\(\theta\)的神经网络;
\((x,y) \in \mathbb{R}^d \times \{1,\ldots, K\}\): 类别及其标签;
h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)=\underset{k=1, \ldots, K}{\arg \max } \mathbf{p}_{k}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right), \quad \mathbf{p}_{k}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right)=\exp \left(\mathbf{z}_{k}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right)\right) / \sum_{k^{\prime}=1}^{K} \exp \left(\mathbf{z}_{k^{\prime}}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right)\right)
\]
定义正分类样本和误分类样本
\]
MART
在所有样本上的鲁棒分类误差:
\mathcal{R}(h_{\theta}) = \frac{1}{n} \sum_{i=1}^n \max_{x_i' \in \mathcal{B}_{\epsilon}(x_i)} \mathbb{1}(h_{\theta}(x_i') \not= y_i),
\]
并定义在错分样本上的鲁棒分类误差
\mathcal{R}^- (h_{\theta}, x_i):= \mathbb{1} (h_{\theta}(\hat{x}_i') \not=y_i) + \mathbb{1}(h_{\theta}(x_i) \not= h_{\theta} (\hat{x}_i'))
\]
其中
\hat{x}_i'=\arg \max_{x_i' \in \mathcal{B}_{\epsilon} (x_i)} \mathbb{1} (h_{\theta} (x_i') \not = y_i).
\]
以及正分样本上的鲁棒分类误差:
\mathcal{R}^+(h_{\theta}, x_i):=\mathbb{1}(h_{\theta}(\hat{x}_i') \not = y_i).
\]
最后, 我们要最小化的是二者的混合误差:
\begin{aligned}
\min _{\boldsymbol{\theta}} \mathcal{R}_{\text {misc }}\left(h_{\boldsymbol{\theta}}\right): &=\frac{1}{n}\left(\sum_{i \in \mathcal{S}_{h}^{+}} \mathcal{R}^{+}\left(h_{\boldsymbol{\theta}}, \mathbf{x}_{i}\right)+\sum_{i \in \mathcal{S}_{\boldsymbol{h}_{\boldsymbol{\theta}}}^{-}} \mathcal{R}^{-}\left(h_{\boldsymbol{\theta}}, \mathbf{x}_{i}\right)\right) \\
&=\frac{1}{n} \sum_{i=1}^{n}\left\{\mathbb{1}\left(h_{\boldsymbol{\theta}}\left(\hat{\mathbf{x}}_{i}^{\prime}\right) \neq y_{i}\right)+\mathbb{1}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right) \neq h_{\boldsymbol{\theta}}\left(\hat{\mathbf{x}}_{i}^{\prime}\right)\right) \cdot \mathbb{1}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right) \neq y_{i}\right)\right\}
\end{aligned}.
\]
为了能够传递梯度, 需要利用一些替代函数"软化"上面的损失函数, 对于\(\mathbb{1}(h_{\theta}(\hat{x}_i')\not = y_i)\)利用BCE损失函数替代
\mathrm{BCE} (p(\hat{x}_i, \theta),y_i)= -\log (p_{y_i} (\hat{x}_i',\theta))- \log (1-\max_{k\not=y_i} p_k(\hat{x}_i',\theta)),
\]
第一项为普通的交叉熵损失, 第二项用于提高分类边界.
对于第二项\(\mathbb{1}(h_{\theta}(x_i)\not=h_{\theta}(\hat{x}_i'))\), 用KL散度作为替代
\mathrm{KL} (p(x_i, \theta)\| p(\hat{x}_i', \theta))=\sum_{k=1}^K p_k(x_i, \theta)\log \frac{p_k(x_i,\theta)}{p_k(\hat{x}_i',\theta)}.
\]
最后一项\(\mathbb{1}(h_{\theta}(x_i) \not =y_i)\)则可用 \(1-p_{y_i}(x_i,\theta)\)来代替.
于是最后的损失函数便是
\mathcal{L}^{\mathrm{MART}}(\theta)= \frac{1}{n} \sum_{i=1}^n \ell(x_i, y_i, \theta),
\]
其中
\]
IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES的更多相关文章
- Improving Adversarial Robustness via Channel-Wise Activation Suppressing
目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...
- Improving Adversarial Robustness Using Proxy Distributions
目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...
- Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of ...
- Second Order Optimization for Adversarial Robustness and Interpretability
目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustn ...
- Certified Adversarial Robustness via Randomized Smoothing
目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized S ...
- Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- (转)Is attacking machine learning easier than defending it?
转自:http://www.cleverhans.io/security/privacy/ml/2017/02/15/why-attacking-machine-learning-is-easier- ...
- [C5] Andrew Ng - Structuring Machine Learning Projects
About this Course You will learn how to build a successful machine learning project. If you aspire t ...
随机推荐
- API 管理在云原生场景下的机遇与挑战
作者 | 张添翼 来源 | 尔达Erda公众号 云原生下的机遇和挑战 标准和生态的意义 自从 Kubernetes v1.0 于 2015 年 7 月 21 日发布,CNCF 组织随后建立以来,其 ...
- A Child's History of England.44
At this period of his reign, when his troubles seemed so few and his prospects so bright, those dome ...
- java打jar包和运行jar包的两种方式
java打jar包和运行jar包的两种方式更详细的打包方式请参考https://www.cnblogs.com/mq0036/p/8566427.html 一.java类不依赖第三方jar包以简单的一 ...
- mybatis-plus分页记坑
mapper接口方法返回IPage,如果不传page会报npe,底层assert page!=null有啥用?
- Data Calendar
1.Date对象 Date类在java.util包中.使用Date类的无参数构造方法创建的对象可以获取本地当前时间. 用Date的构造方法Date(long time)创建的Date对象表 示相对19 ...
- 【编程思想】【设计模式】【创建模式creational】抽象工厂模式abstract_factory
Python版 https://github.com/faif/python-patterns/blob/master/creational/abstract_factory.py #!/usr/bi ...
- Hadoop生态圈学习-1(理论基础)
一.大数据技术产生的背景 1. 计算机和信息技术(尤其是移动互联网)的迅猛发展和普及,行业应用系统的规模迅速扩大(用户数量和应用场景,比如facebook.淘宝.微信.银联.12306等),行业应用所 ...
- java中二维数组初始化的几种方法
/* 第一种方式 */ int tdarr1[][] = { { 1, 3, 5 }, { 5, 9, 10 } }; /* 第二种方式 */ int tdarr2[][] = new int[][] ...
- Excel如何使用VLOOKUP函数多条件匹配查找数据
一.对应源数据如sheet6所示,对应需查找的数据如sheet7所示 二.在sheet6中添加一列辅助列 三.在sheet7对应位置插入vlookup函数 四.最终结果如下图所示
- java JDK8 时间处理
目录 时间格式化 LocalDate:年月日 LocalTime:时分秒毫秒 LocalDateTime:年月日时分秒 Instant:纳秒时间戳 Duration:两时间间隔 Duration:处理 ...