Solution -「JLOI 2015」「洛谷 P3262」战争调度
\(\mathcal{Description}\)
Link.
给定一棵 \(n\) 层的完全二叉树,你把每个结点染成黑色或白色,满足黑色叶子个数不超过 \(m\)。对于一个叶子 \(u\),若其 \(k\) 级父亲与其同为黑色,则对答案贡献 \(a_{uk}\);若同为白色,则对答案贡献 \(b_{uk}\)。求最大贡献和。
\(n\le10\)。
\(\mathcal{Solution}\)
想要 DP,比如令 \(f(u,i)\) 表示 \(u\) 子树内有 \(i\) 个叶子为黑色时的最大贡献和。但发现这根本没法转移 qwq。
那……爆搜呢?
从上往下搜索,直接钦定当前非叶结点是黑是白,搜到叶子时,在向上计算当前叶子是黑色/白色时的贡献,回溯时简单背包。复杂度 \(\mathcal O(n4^n)\),可过欸!
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
const int MAXN = 10;
int n, m, a[1 << MAXN | 5][MAXN + 5], b[1 << MAXN | 5][MAXN + 5];
int f[1 << MAXN | 5][1 << MAXN | 5];
bool fight[1 << MAXN | 5];
inline void chkmax ( int& a, const int b ) { a < b && ( a = b, 0 ); }
inline void solve ( const int u, const int d ) {
for ( int i = 0; i <= 1 << d; ++ i ) f[u][i] = 0;
if ( !d ) {
for ( int i = 1; i <= n; ++ i ) {
if ( fight[u >> i] ) f[u][1] += a[u][i];
else f[u][0] += b[u][i];
}
} else {
for ( int k = 0; k <= 1; ++ k ) {
fight[u] = k;
solve ( u << 1, d - 1 ), solve ( u << 1 | 1, d - 1 );
for ( int i = 0; i <= 1 << d >> 1; ++ i ) {
for ( int j = 0; j <= 1 << d >> 1; ++ j ) {
chkmax ( f[u][i + j], f[u << 1][i] + f[u << 1 | 1][j] );
}
}
}
}
}
int main () {
scanf ( "%d %d", &n, &m ), -- n;
for ( int i = 0; i < 1 << n; ++ i ) {
for ( int j = 1; j <= n; ++ j ) {
scanf ( "%d", &a[( 1 << n ) + i][j] );
}
}
for ( int i = 0; i < 1 << n; ++ i ) {
for ( int j = 1; j <= n; ++ j ) {
scanf ( "%d", &b[( 1 << n ) + i][j] );
}
}
solve ( 1, n );
int ans = 0;
for ( int i = 0; i <= m; ++ i ) chkmax ( ans, f[1][i] );
printf ( "%d\n", ans );
return 0;
}
Solution -「JLOI 2015」「洛谷 P3262」战争调度的更多相关文章
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
- 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】
题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...
- 「洛谷3870」「TJOI2009」开关【线段树】
题目链接 [洛谷] 题解 来做一下水题来掩饰ZJOI2019考炸的心情QwQ. 很明显可以线段树. 维护两个值,\(Lazy\)懒标记表示当前区间是否需要翻转,\(s\)表示区间还有多少灯是亮着的. ...
随机推荐
- ubuntu18.04 安装谷歌chrome浏览器
将下载源添加到系统源列表 # sudo wget http://www.linuxidc.com/files/repo/google-chrome.list -P /etc/apt/source.li ...
- Redis 应用问题
Redis 应用问题 1.缓存穿透 1.1.问题概述 key 对应的数据在数据源中不存在,每次针对此 key 的请求从缓存获取不到,请求都会压到数据源(也就是不断的去查数据库,从而使得数据库系统崩溃) ...
- ADD software version display
ADD software version display ADD software version display1. Problem Description2. Analysis3. Solutio ...
- 嫌Excel VBA执行速度慢,这些建议你一定要看
Excel是办公利器,这无需多言.尤其在办公室,Excel用的熟练与否,会的Excel知识点多不多,很大程度上决定了你工作是否高效,能否按时打卡下班.可我们也时常听到这样的吐槽:Excel好是好,可就 ...
- 1.配置桥接,并抓包验证 2.实现免密登录 3.修改登录端口: 22-》2222 4.不允许root用户远程登录 5.创建用户sshuser1,并设置密码,且只允许sshuser1远程ssh登录
1.配置桥接: 抓包时如果有ens160的ICMP,说明我们的桥接搭建成功通过桥接访问到了ens160(这里忘加图片了) (1)创建一个桥接设备和会话 (2)添加设备和会话到桥接设备上 (3)启动从 ...
- Termux搭建hexo博客并部署到GitHub
Termux搭建hexo博客并部署到GitHub 安装 termux-change-repo apt update apt install git && nodejs &&am ...
- manjora20不小心卸载,重新安装terminal,软件商店/软件中心linux类似
问题 重新安装老版本gnome-shell 如果突然死机可能卸载完了terminal和软件商店,但是没有安装新的. 此时没有terminal也没有软件商店 无法安装软件 解决方案 terminal c ...
- 如何根据经纬度计算地面上某点在XYZ空间直角坐标系中的坐标
如何根据经纬度计算地面上某点在XYZ空间直角坐标系中的坐标 /** * @param r: number 到地心的距离 * @param lon: number 经度 * @param lat: nu ...
- netty基础知识
参考 http://www.infoq.com/cn/articles/netty-high-performance 1. 传统 RPC 调用性能差的三宗罪 1)网络传输方式问题 2)序列化方式问题 ...
- atan2(y,x)和pow(x,y)
atan2(y,x): 函数atan2(y, x)是4象限反正切,求的是y/x的反正切,其返回值为[-π,+π]之间的一个数.它的取值不仅取决于正切值y/x,还取决于点 (x, y) 落入哪个象限: ...