Python中Numpy及Matplotlib使用
Python中Numpy及Matplotlib使用
1. Jupyter Notebooks
作为小白,我现在使用的python编辑器是Jupyter Notebook,非常的好用,推荐!!!
你可以按[Ctrl] + [Enter]快捷键或按菜单中的运行按钮来运行单元格。

在function(后面按[shift] + [tab],可以获得函数或对象的帮助。

你还可以通过执行function?获得帮助。

2. NumPy 数组
操作numpy数组是 Python 机器学习(或者,实际上是任何类型的科学计算)的重要部分。 在这里我主要快速介绍一下重要基本的功能。
import numpy as np
# 设置随机种子来获得可重复性
rnd = np.random.RandomState(seed=520)
# 生成随机数组
# Array: shape(3, 5);
# value: [0, 1]
X = rnd.uniform(low=0.0, high=1.0, size=(3, 5))
print(X)
(请注意,NumPy 数组也是从 0 开始的索引)
# 元素访问
# 获取单个元素
# (这里是第一行第一列的元素)
print(X[0, 0])
# 获取一行
# (这里是第二行)
print(X[1])
# 获取一列
# (这里是第二列)
print(X[:, 1])
# 数组转置
print(X.T)
# 创建均匀间隔的数字的行向量。
y = np.linspace(0, 12, 5) # 从0开始,到12结束,数量为5
print(y)
# 将行向量转换为列向量
print(y[:, np.newaxis])
# 获得形状或改变数组形状
# 生成随机数组
rnd = np.random.RandomState(seed=520)
X = rnd.uniform(low=0.0, high=1.0, size=(3, 5))
# X的大小(3,5)
print(X.shape)
# 将 X 大小变为 (5,3)
X_reshaped = X.reshape(5, 3)
print(X_reshaped)
# 使用整数数组的索引(花式索引)
indices = np.array([3, 1, 0])
print(indices)
# 取X的第4,2,1列作为新数组
X[:, indices]
3. SciPy 稀疏数组
虽然我们平时不会大量使用它们,但稀疏矩阵在某些情况下非常好用。 在一些机器学习任务中,尤其是与文本分析相关的任务,数据可能大多为零。 存储所有这些零是非常低效的,并且以仅包含“非零”值的方式表示可以更有效。 我们可以创建和操作稀疏矩阵,如下所示:
# 创建一个包含大量零的随机数组
rnd = np.random.RandomState(seed=123)
X = rnd.uniform(low=0.0, high=1.0, size=(10, 5))
print(X)
# 将大多数元素设置为零
X[X < 0.7] = 0
print(X)
from scipy import sparse
# 将 X 转换为 CSR(压缩稀疏行)矩阵
X_csr = sparse.csr_matrix(X)
print(X_csr)
# 将稀疏矩阵转换为密集数组
print(X_csr.toarray())
(你可能偶然发现了一种将稀疏表示转换为密集表示的替代方法:numpy.todense;toarray返回一个 NumPy 数组,而todense返回一个 NumPy 矩阵。在本教程中,我们将使用 NumPy 数组,而不是矩阵;scikit-learn 不支持后者。)
CSR 表示对于计算非常有效,但它不适合添加元素。 为此,LIL(List-In-List)表示更好:
# 创建一个空的 LIL 矩阵并添加一些项目
X_lil = sparse.lil_matrix((5, 5))
for i, j in np.random.randint(0, 5, (15, 2)):
X_lil[i, j] = i + j
print(X_lil)
print(type(X_lil))
X_dense = X_lil.toarray()
print(X_dense)
print(type(X_dense))
通常,一旦创建了 LIL 矩阵,将其转换为 CSR 格式很有用(许多 scikit-learn 算法需要 CSR 或 CSC 格式)
X_csr = X_lil.tocsr()
print(X_csr)
print(type(X_csr))
可用于各种问题的可用稀疏格式包括:
CSR(压缩稀疏行)CSC(压缩稀疏列)BSR(块稀疏行)COO(坐标)DIA(对角线)DOK(键的字典)LIL(列表中的列表)
scipy.sparse子模块还有很多稀疏矩阵的函数,包括线性代数,稀疏求解器,图算法等等。
4. Matplotlib
机器学习的另一个重要部分是数据可视化。 Python 中最常用的工具是matplotlib。 这是一个非常灵活的包,我们将在这里介绍一些基础知识。
由于使用的是 Jupyter,所以使用 IPython 方便的内置“魔术函数”,即“matoplotlib内联”模式,它将直接在笔记本内部绘制图形。
%matplotlib inline
import matplotlib.pyplot as plt
# 绘制直线
x = np.linspace(0, 10, 100)
plt.plot(x, np.sin(x));
# 散点图
x = np.random.normal(size=500)
y = np.random.normal(size=500)
plt.scatter(x, y);
# 使用 imshow 展示绘图
# - note that origin is at the top-left by default!
x = np.linspace(1, 12, 100)
y = x[:, np.newaxis]
im = y * np.sin(x) * np.cos(y)
print(im.shape)
plt.imshow(im);
# 轮廓图
# - 请注意,此处的原点默认位于左下角!
plt.contour(im);
# 3D 绘图
from mpl_toolkits.mplot3d import Axes3D
ax = plt.axes(projection='3d')
xgrid, ygrid = np.meshgrid(x, y.ravel())
ax.plot_surface(xgrid, ygrid, im, cmap=plt.cm.viridis, cstride=2, rstride=2, linewidth=0);
有许多可用的绘图类型。 查看matplotlib库是一个很快的学习方法。
Python中Numpy及Matplotlib使用的更多相关文章
- Python中Numpy ndarray的使用
本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数 ...
- 基于Python中numpy数组的合并实例讲解
基于Python中numpy数组的合并实例讲解 下面小编就为大家分享一篇基于Python中numpy数组的合并实例讲解,具有很好的参考价值,希望对大家有所帮助.一起跟随小编过来看看吧 Python中n ...
- python中numpy矩阵运算操作大全(非常全)!
python中numpy矩阵运算操作大全(非常全) //2019.07.10晚python矩阵运算大全1.矩阵的输出形式:对于任何一个矩阵,python输出的模板是:import numpy as n ...
- win7系统下python安装numpy,matplotlib,scipy和scikit-learn
1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...
- 在python中使用图形库matplotlib
matplotlib is a python 2D plotting library which produces publication quality figures in a variety o ...
- Python安装Numpy,matplotlib库
<1> Numpy是一款基于python的功能强大的科学计算包.要安装numpy首先你得先安装python. python的安装非常简单,本人安装的是python2.7 具体安装步骤如下: ...
- Python中NumPy基础使用
Python发展至今,已经有越来越多的人使用python进行科学技术,NumPY是python中的一款高性能科学计算和数据分析的基础包. ndarray ndarray(以下简称数组)是numpy的数 ...
- Python中NumPy的使用一
NumPy简介: 一个用python实现的科学计算,包括:1.一个强大的N维数组对象Array:2.比较成熟的(广播)函数库:3.用于整合C/C++和Fortran代码的工具包:4.实用的线性代数.傅 ...
- Python 安装 numpy 以及 matplotlib 的过程
系统:ubuntu 16.04 版本:Python3.5 步骤: 安装 pip sudo apt install python3-pip 查看 pip list 是否有 numpy 以及 matplo ...
随机推荐
- Spring Boot学习(一)——Spring Boot介绍
Spring Boot介绍 Spring Boot简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式 ...
- 详解C3P0(数据库连接池)
详解C3P0(数据库连接池) 快速索引 一.基本定义 二.使用C3P0(数据库连接池)的必要性 1.JDBC传统模式开发存在的主要问题 三.数据库连接池的详细说明 四.使用连接池的明显优势 1.资源的 ...
- linux关于profile 、bashrc 、.bash_profile、.bashrc的区别
linux关于profile .bashrc ..bash_profile..bashrc的区别 - /etc/profile /etc/bashrc ~/.bash_profile ~/.bashr ...
- Learning How to Learn 学习如何学习
Introduction 这是 UCSD 开设在 Coursera 上的课程 Learning How to Learn 的课程笔记.这门课程主要基于神经科学和认知心理学的一些研究成果讲述高效学习的理 ...
- vue-cookies使用
一.安装 vue-cookies npm install vue-cookies --save 二.引入并声明使用 import Vue form 'Vue' import VueCookies fr ...
- 使用 mysql 的 Docker 镜像
使用 mysql 的 Docker 镜像 前言 之前搞了很多都是手工在操作系统的镜像中安装使用 mysql,作为自己折腾也就算了,作为实际使用实为不妥:Docker最重要的特性就是可扩展性,把各种程序 ...
- 机器学习——Adaboost
1 Adaboost 的提出 1990年,Schapire最先构造出一种多项式级的算法,即最初的Boost算法; 1993年,Drunker和Schapire第一次将神经网络作为弱学习器,应用Boos ...
- pip3 install beautifulsoup4 出现错误 There was a problem confirming the ssl certificate
chenhuimingdeMacBook-Pro:groceryList Mch$ sudo pip3 install beautifulsoup4 The directory '/Users/Mch ...
- 从零开始部署 Yapi(Windows+Nginx)
一.环境准备及安装 本文中是以本地 Windows 作为安装环境,Nginx 做反向代理,亲测验证可用. Yapi 运行需要的环境: Nodejs,MongoDB 安装包都在文档末尾处 1.1 安装 ...
- 最详细的搭建web自动化测试网站,别再说你没有实战项目(文未有福利)
一步步教你搭建开源网站 环境准备: Tomcat shopping商城文件 jdk环境 Mysql环境 解压shopping.rar拷贝至tomcat/webapps 在navicat导入数据库db_ ...