题解 Cicada 拿衣服
- 见到这些奇奇怪怪的题是不是应该试着证下状态数上界啊
首先观察题目里给的柿子,可以发现 \(or-and\) 单调增, \(min-max\) 单调减
神仙思路,发现对于一个给定的左端点,我怀疑出题人是左撇子,不同的 \(or-and\) 最多只有 \(2logn\) 个,证明应该很简单
那尝试把这些 \(or-and\) 相同的区间拎出来,从右向左枚举区间,在区间内二分可得合法的最远右端点
然后问题来了:如何 \(O(1)\) 维护出这些区间
神仙思路,考虑什么是这些区间的边界,会发现一个数是边界当且仅当这一位上出现了之前没有在这一位上出现过的数
也即比如左边界上第 \(i\) 位是1,那向右找到第一个这一位上是0的数,那个数就会是一个边界
这个可以维护出一个next0和一个next1单调指针,每次排个序处理
然后区间最值,区间与或都需要 \(O(1)\) 出,都可以用ST表
所以满足区间可重性的东西都可以用ST表?
关于区间整体取max:
另一种实现方法是把线段差分,拆分为在 \(l\) 插入一个长度,在 \(r\) 删除一个长度的事件,拿一个multiset维护,每次取出最大值即可
但这样要求区间数不能太多关于ST表和lca的fa数组:
把大小是log的那一维放在前面真的会快
然后具体实现上注意我让每个端点是区间的右端点,所以每次还得特别把位置 \(n\) 扔进去
Code:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 1000010
#define ll long long
#define reg register int
#define fir first
#define sec second
#define make make_pair
#define max2(a, b) ((a)>(b)?(a):(b))
#define min2(a, b) ((a)<(b)?(a):(b))
//#define int long long
char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline int read() {
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans;
}
int n, k;
int ta1[28][N], ta2[28][N], ta3[28][N], ta4[28][N], top, lg[N], a[N];
pair<int, int> add[N], del[N];
multiset<int> s;
struct point{
int dlt, pos0, pos1;
point():pos0(1),pos1(1){}
int nxt0(int i) {
//cout<<"nxt0: "<<i<<' '<<pos0<<endl;
if (i>=pos0) {pos0=i+1; i=1<<dlt; while (pos0<=n && (a[pos0]&i)) ++pos0;}
//cout<<"return "<<pos0<<endl;
return pos0;
}
int nxt1(int i) {
if (i>=pos1) {pos1=i+1; i=1<<dlt; while (pos1<=n && !(a[pos1]&i)) ++pos1;}
return pos1;
}
}p[28];
inline int qmin(int l, int r) {
int t=lg[r-l+1]-1;
return min(ta2[t][l], ta2[t][r-(1<<t)+1]);
}
inline int qmax(int l, int r) {
int t=lg[r-l+1]-1;
return max(ta1[t][l], ta1[t][r-(1<<t)+1]);
}
inline int qor(int l, int r) {
int t=lg[r-l+1]-1;
return ta3[t][l]|ta3[t][r-(1<<t)+1];
}
inline int qand(int l, int r) {
int t=lg[r-l+1]-1;
return ta4[t][l]&ta4[t][r-(1<<t)+1];
}
signed main()
{
n=read(); k=read();
for (reg i=1; i<=n; ++i) a[i]=read();
for (reg i=1; i<=n; ++i) ta1[0][i]=ta2[0][i]=ta3[0][i]=ta4[0][i]=a[i];
for (reg i=1; i<=n; ++i) lg[i]=lg[i-1]+(1<<lg[i-1]==i);
int lim=lg[n]-1;
for (reg j=0; j<lim; ++j)
for (reg i=1,t,lm=n-(1<<(j+1))+1; i<=lm; ++i) {
t=i+(1<<j);
ta1[j+1][i]=max2(ta1[j][i], ta1[j][t]);
ta2[j+1][i]=min2(ta2[j][i], ta2[j][t]);
ta3[j+1][i]=ta3[j][i]|ta3[j][t];
ta4[j+1][i]=ta4[j][i]&ta4[j][t];
}
for (reg i=0; i<27; ++i) p[i].dlt=i;
int tem[30];
for (reg i=1; i<=n; ++i) {
//cout<<"i="<<i<<": "<<endl;
for (reg j=0; j<27; ++j) tem[j]=(a[i]&(1<<j))?p[j].nxt0(i):p[j].nxt1(i);
tem[27]=i; tem[28]=n+1;
sort(tem, tem+29);
//assert(tem[0]==i);
//cout<<"tem: "; for (int i=0; i<=27; ++i) cout<<tem[i]<<' '; cout<<endl;
for (reg j=28,t1,t2,l,r,mid; j; --j) {
if (tem[j-1]==tem[j]) continue;
t1=qor(i, tem[j]-1)-qand(i, tem[j]-1), t2=qmin(i, tem[j-1])-qmax(i, tem[j-1]);
if (t1+t2>=k) {
//cout<<"t1="<<t1<<" and t2="<<t2<<' '<<t1+t2<<endl;
//cout<<"tem_j: "<<tem[j-1]<<' '<<tem[j]-1<<endl;
l=tem[j-1], r=tem[j]-1;
while (l<=r) {
mid=(l+r)>>1;
if (t1+qmin(i, mid)-qmax(i, mid)>=k) l=mid+1;
else r=mid-1;
}
//cout<<"lr: "<<l<<' '<<r<<endl;
add[++top]=make(i, l-i), del[top]=make(l, l-i);
break;
}
}
}
sort(del+1, del+top+1);
int pos1=1, pos2=1;
//cout<<"---add---"<<endl; for (int i=1; i<=top; ++i) cout<<add[i].fir<<','<<add[i].sec<<endl;
//cout<<"---del---"<<endl; for (int i=1; i<=top; ++i) cout<<del[i].fir<<','<<del[i].sec<<endl;
for (reg i=1; i<=n; ++i) {
//cout<<"add: "<<add[i].sec<<endl;
while (pos1<=top && add[pos1].fir<=i) s.insert(add[pos1++].sec);
while (pos2<=top && del[pos2].fir<=i) {
//cout<<"del: "<<del[pos].fir<<' '<<del[pos].sec<<endl;
s.erase(s.find(del[pos2++].sec));
}
printf("%d ", s.size()?*s.rbegin():-1);
}
printf("\n");
return 0;
}
题解 Cicada 拿衣服的更多相关文章
- 「10.28」Dove 打扑克(链表)·Cicada 与排序(概率)·Cicada 拿衣服(各种数据结构)
A. Dove 打扑克 考场思考半天线段树树状数组,没有什么想法 打完暴力后突然想到此题用链表实现会很快. 因为只有$n$堆,所以设最多有$x$个不同的堆数,那么$x\times (x-1)/2==n ...
- [CSP-S模拟测试]:Cicada拿衣服(暴力+乱搞)
题目传送门(内部题94) 输入格式 第一行两个整数$n,k$,代表衣服的数量和阈值. 接下来一行$n$个数,第$i$个数$a_i$表示每件衣服的愉悦值. 输出格式 输出一行$n$个数,第$i$个数为$ ...
- NOIP 模拟 $36\; \rm Cicada 拿衣服$
题解 \(by\;zj\varphi\) 发现右端点固定时,左端点的 \(min-max\) 单调递减,且对于 \(or\) 和 \(and\) 相减,最多有 \(\rm2logn\)个不同的值,且相 ...
- 20210811 Dove 打扑克,Cicada 与排序,Cicada 拿衣服
考场 开考感觉 T3 比较可做.T1 看上去不难但毫无思路. 先想了 25min T3,想到一个确定左端点,二分最长的右端点,甚至想到了用猫树维护区间 or and...上厕所回来发现假了,没有单调性 ...
- [考试反思]1028csp-s模拟测试91:预估
这一轮是要闹哪样啊???前十都死活进不去??? 能不能不要到联赛前突然连续掉链子啊!!! 总算难得的切掉了T1.然后又一次把T2和T3的难度估反了 结果给T2剩下了30分钟,想到正解来不及打了. 然后 ...
- Noip模拟36 2021.8.11
刚题的习惯还是改不了,怎么办??? T1 Dove打扑克 考场上打的动态开点线段树+并查集,考后发现自己像一个傻子,并查集就行.. 这几天恶补数据结构疯了 用树状数组维护后缀和,$siz_i$表示编号 ...
- csp-s模拟测试91
csp-s模拟测试91 倒悬吃屎的一套题. $T1$认真(?)分析题意发现复杂度不能带$n$(?),计划直接维护答案,考虑操作对答案的影响,未果.突然发现可以动态开点权值线段树打部分分,后来$Tm$一 ...
- noip模拟36
\(\color{white}{\mathbb{荷花映日,莲叶遮天,名之以:残荷}}\) 今天再次翻车掉出前十 开题看错 \(t1\) 以为操作2的值固定发现是个简单题,然后 \(t2\) 开始大力 ...
- 2021.8.11考试总结[NOIP模拟36]
T1 Dove玩扑克 考场并查集加树状数组加桶期望$65pts$实际$80pts$,考后多开个数组记哪些数出现过,只扫出现过的数就切了.用$set$维护可以把被删没的数去掉,更快. $code:$ 1 ...
随机推荐
- get和post两种表单提交方式的区别
今天看到一篇博客谈论get和post区别,简单总结一下https://www.cnblogs.com/logsharing/p/8448446.html 要说两者的区别,接触过web开发的人基本上都能 ...
- echarts堆叠柱状图在最上面的柱子显示总和
需求 柱子需设置barMinHeight 在堆叠柱状图的最上面显示当前堆叠的总和 直接上代码吧 需要注意:设置barMinHeight时为了让0不显示,只能将0设置为null; 设置为null的柱子l ...
- AspNetCore&MassTransit Courier实现分布式事务
在之前的一篇博文中,CAP框架可以方便我们实现非实时.异步场景下的最终一致性,而有些用例总是无法避免的需要在实时.同步场景下进行,可以借助Saga事务来解决这一困扰.在一些博文和仓库中也搜寻到了.Ne ...
- 选择适合入门的自动化测试框架TestNG 基于Java语言的入门选择之一
对于测试工程师新手来说,最痛苦的莫过于入门,其实只要入门3个月左右,对于自动化测试,所有的测试工程师除了喜爱,就是更爱.自动化测试工作,是从根本上解放人性,不用重复去完成鼠标的点点点,例如以下测试常常 ...
- PYTHON 当前.PY文件名不能与引入的模块同名
当前文件名:sqlite3.py 文件引入import sqlite3 运行会出错,因为调用sqlite3的方法首先从当前文件找方法,当然找不到,所以会报错了
- MQTT 4 ——MQTT的Spring Mvc 配置接收字节流数据
本篇记录一下MQTT整合Spring Mvc配置直接收发字节流数据 设备方是纯C开发,并且为了交互数据的安全,将传送的数据用了AES CBC进行了加密. 接下来正常方便做法应该是 将加密后的字节流转换 ...
- RHEL7配置端口转发和地址伪装
说明:这里是Linux服务综合搭建文章的一部分,本文可以作为Linux上使用firewalld做端口转发和地址伪装以及外网访问内网的参考. 注意:这里所有的标题都是根据主要的文章(Linux基础服务搭 ...
- 记一次lombok踩坑记
引言 今天中午正在带着耳机遨游在代码的世界里,被运营在群里@了,气冲冲的反问我最近有删生产的用户数据的吗?我肯定客气的回答道没有呀?生产的数据我怎么能随随便便可以删除,这可是公司的红线,再说了我也没有 ...
- Skywalking-04:扩展Metric监控信息
扩展 Metric 监控信息 官方文档 Source and Scope extension for new metrics 案例:JVM Thread 增加 Metrics 修改 Thread 的定 ...
- Python - 可变和不可变对象
前置知识 在 Python 中,一切皆为对象 Python 中不存在值传递,一切传递的都是对象的引用,也可以认为是传址 有哪些可变对象,哪些不可变对象? 不可变对象:字符串.元组.数字(int.flo ...