奇数阶魔方

描述
一个 n 阶方阵的元素是1,2,...,n^2,它的每行,每列和2条对角线上元素的和相等,这样的方阵叫魔方。n为奇数时我们有1种构造方法,叫做“右上方” ,例如下面给出n=3,5,7时的魔方.
3
8 1 6
3 5 7
4 9 2
5
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
7
30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45
13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20
第1行中间的数总是1,最后1行中间的数是n^2,他的右边是2,从这三个魔方,你可看出“右上方”是何意。 
输入
包含多组数据,首先输入T,表示有T组数据.每组数据1行给出n(3<=n<=19)是奇数。
输出
对于每组数据,输出n阶魔方,每个数占4格,右对齐
样例输入
2
3
5
样例输出
   8   1   6
3 5 7
4 9 2
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

这是一个找规律的题目:

所谓“右上方”就是数字更新的时候总是向右上方递增。从第一行中间位置开始遍历,赋为1. 如果当前位置是第一行(但不是最后一列),那么下一个位置就是下一列的最后一行(正如题目描述中的1之后的2);如果是最后一列(但不是第一行),那么下一个位置就是上一行的第一列;如果不是上述二者,那么判定该位置的“右上方”是否已经遍历过,如果没有,那下一个位置就是该位置的右上方的位置;否则,下一个位置就是同列的下一行的位置;最后,如果当前位置是最右上方,那么下一个位置就是他的同列的下一行。

AC代码为:

 #include<stdio.h>
#include<string.h>
int main()
{
int i,j,n,m,a[][],vis[][],ans;
scanf("%d",&m);
while(m--){
scanf("%d",&n);
memset(a,,sizeof(a));
memset(vis,,sizeof(vis));
i=; /*1总是在第一行*/
j=(n+)/; /*中间那个数*/
ans=; /*从1开始记录*/
while(ans<=n*n) /*1->n^2*/
{
a[i][j]=ans; /*记录当前位置的值*/
vis[i][j]=; /*记录当前位置以更新*/
if(i==&&j!=n) /*第一行不是最后一列*/
{
i=n; /*最后一行*/
j=j+; /*后面一列*/
}
else if(j==n&&i!=) /*最后一列但不是第一行*/
{
i=i-;
j=; /*上一行第一列*/
}
else if(j!=n&&!vis[i-][j+]) /*更新右上角的值*/
{
i=i-;
j=j+; /*右上角*/
}
else if(i!=n&&j!=n&&vis[i-][j+]) /*右上角已更新*/
i=i+; /*跳到同列下一行*/
else if(i==&&j==n) /*最右上角*/
i=i+; /*跳到同列下一行*/
ans++;
}
for(i=;i<=n;i++){
for(j=;j<=n;j++)
printf("%4d",a[i][j]);
printf("\n");
}
}
return ;
}

NYOJ 734的更多相关文章

  1. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  2. NYOJ 998

    这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...

  3. NYOJ 333

    http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...

  4. NYOJ 99单词拼接(有向图的欧拉(回)路)

    /* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...

  5. nyoj 10 skiing 搜索+动归

    整整两天了,都打不开网页,是不是我提交的次数太多了? nyoj 10: #include<stdio.h> #include<string.h> ][],b[][]; int ...

  6. 简答哈希实现 (nyoj 138 找球号2)

    例题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=138 代码目的:复习哈希用 代码实现: #include "stdio.h&qu ...

  7. nyoj 284 坦克大战 简单搜索

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=284 题意:在一个给定图中,铁墙,河流不可走,砖墙走的话,多花费时间1,问从起点到终点至少 ...

  8. nyoj 170 网络的可靠性

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=170 思路:统计每个节点的度,将度为1的节点消去所需要的最少的边即为答案. 代码: #in ...

  9. nyoj 139 我排第几个--康拓展开

    我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说 ...

随机推荐

  1. 学习笔记之-------UIScrollView 基本用法 代理使用

    //contentSize.contentInset和contentOffset 是 scrollView三个基本的属性. // 滚动 self.ScrollView.contentSize =sel ...

  2. 速战速决 (4) - PHP: 类基础, 抽象类, 接口, trait

    [源码下载] 速战速决 (4) - PHP: 类基础, 抽象类, 接口, trait 作者:webabcd 介绍速战速决 之 PHP 类基础 抽象类 接口 trait 示例1.类的相关知识点 1(基础 ...

  3. Eclipse中的checkstyle插件

    一.Checkstyle工具 Checkstyle是一款检查Java程序源代码样式的工具,它可以有效的帮助我们检视代码以便更好的遵循代码编写标准. 官方地址:http://checkstyle.sou ...

  4. C# Async/Await

    前言   前几天去一个公司面试,被问到 Async/Await,之前只知道有这么个东西,没有深入了解过就没有答上来.今天没啥事情,就查了下资料. 同步编程,异步编程概念     通常情况下,我们写的程 ...

  5. 转载 CSS3 经典教程系列:CSS3 盒阴影(box-shadow)详解

    目标大纲 文章转载 CSS3 经典教程系列:CSS3 盒阴影(box-shadow)详解 IE中CSS-filter滤镜小知识大全 CSS实现跨浏览器兼容性的盒阴影效果

  6. extjs combobox 事件

    change---显示的值改变事件 select---选中选项事件 expand---下拉框展开事件 collapse--下拉框折叠事件 { xtype: 'container', width: 25 ...

  7. JavaScript实现拖拽元素对齐到网格(每次移动固定距离)

    这几天在做一个拖拽元素的附加功能,就是对齐到网格,实际上就是确定好元素的初始位置,然后拖拽元素时,每次移动固定的距离.让元素都可以在网格内对齐.先上效果图,然后在详细说明一下细节问题 做了一个gif图 ...

  8. iOS AutoLayout的用法

    添加约束 代码实现Autolayout的步骤 利用NSLayoutConstraint类创建具体的约束对象 添加约束对象到相应的view上 - (void)addConstraint:(NSLayou ...

  9. Linux安全基础:网络配置命令

    1.ifconfig查看和配置网络接口信息(1)设ip地址ifconfig eth0 192.168.0.1(2)暂时关闭或启用网卡ifconfig eth0 downifconfig eth0 up ...

  10. UITextView回收或关闭键盘

    iOS开发中,发现UITextView没有像UITextField中textFieldShouldReturn:这样的方法,那么要实现UITextView关闭键盘,就必须使用其他的方法,下面是可以使用 ...