w(t) \longrightarrow \bigg[\frac{\sqrt{2\sigma ^2\beta}}{s+\beta}\bigg]  \longrightarrow \bigg[\frac{1}{s}\bigg] \longrightarrow y

$w(t) \longrightarrow \bigg[\frac{\sqrt{2\sigma ^2\beta}}{s+\beta}\bigg]  \longrightarrow \bigg[\frac{1}{s}\bigg] \longrightarrow y$

\usepackage{amsmath}  %可以使用\boldsymbol加粗罗马字符;\mathbf对罗马字符不起作用。

\mathbf{x}_{k+1} = \boldsymbol{\phi}_k \mathbf{x}_k + \mathbf{w}_k

$\mathbf{x}_{k+1} = \boldsymbol{\phi}_k \mathbf{x}_k + \mathbf{w}_k$

%注意{和}是特殊字符,使用\{和\}

\mathbf{Q}_k=E[\mathbf{w}_k\mathbf{w}_k^T]

=E\big\{   \big[ \int_{t_k}^{t_{k+1}} \boldsymbol{\phi}(t_{k+1}, u) \mathbf{G}(u) \mathbf{w}(u)du \big]  \big[ \int_{t_k}^{t_{k+1}}\boldsymbol{\phi}(t_{k+1},v) \mathbf{G}(v) \mathbf{w}(v)dv \big]^T   \big\}

=\int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} \boldsymbol{\phi}(t_{k+1}, u)\mathbf{G}(u)E[\mathbf{w}(u)\mathbf{w}^T(v)]\mathbf{G}^T(v)\boldsymbol{\phi}^T(t_{k+1},v)dudv

$\mathbf{Q}_k=E[\mathbf{w}_k\mathbf{w}_k^T]$

$=E\big\{   \big[ \int_{t_k}^{t_{k+1}} \boldsymbol{\phi}(t_{k+1}, u) \mathbf{G}(u) \mathbf{w}(u)du \big]  \big[ \int_{t_k}^{t_{k+1}}\boldsymbol{\phi}(t_{k+1},v) \mathbf{G}(v) \mathbf{w}(v)dv \big]^T   \big\}$

$=\int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} \boldsymbol{\phi}(t_{k+1}, u)\mathbf{G}(u)E[\mathbf{w}(u)\mathbf{w}^T(v)]\mathbf{G}^T(v)\boldsymbol{\phi}^T(t_{k+1},v)dudv$

\left[\begin{matrix}

\dot{x_1}\\\dot{x_2}

\end{matrix}\right]

= \left[

\begin{matrix}

0&1\\0&-\beta

\end{matrix}

\right]

\left[\begin{matrix}

x_1\\x_2

\end{matrix}\right] +

\left[\begin{matrix}

0\\\sqrt{2\sigma^2\beta}

\end{matrix}\right]w(t)

$\left[\begin{matrix}\dot{x_1}\\\dot{x_2}\end{matrix}\right] = \left[\begin{matrix}0&1\\0&-\beta\end{matrix}\right] \left[\begin{matrix}x_1\\x_2\end{matrix}\right] + \left[\begin{matrix}0\\\sqrt{2\sigma^2\beta}\end{matrix}\right]w(t)$

y=\left[\begin{matrix}

1&0\

end{matrix}\right]

\left[\begin{matrix}

x_1\\x_2

\end{matrix}\right]

$y=\left[\begin{matrix}1&0\end{matrix}\right]\left[\begin{matrix}x_1\\x_2\end{matrix}\right]$

三角形帽子表示估计

\mathbf{\hat{x}}_k^-=\boldsymbol{\Phi}_k\mathbf{\hat{x}}_{k-1}+\mathbf{G}_k\mathbf{u}_k

$\mathbf{\hat{x}}_k^-=\boldsymbol{\Phi}_k\mathbf{\hat{x}}_{k-1}+\mathbf{G}_k\mathbf{u}_k$

LaTex与数学公式的更多相关文章

  1. 在博客中使用LaTeX插入数学公式

    在博客中使用LaTeX插入数学公式 在学习机器学习中会接触到大量的数学公式,所以在写博客是会非常的麻烦.用公式编辑器一个一个写会非常的麻烦,这时候我们可以使用LaTeX来插入公式. 写这篇博文的目的在 ...

  2. LaTex 高中数学公式

    排版数学公式是TeX系统设计的初衷,它在LaTeX中占有特殊地位,也是LaTeX最为人所称道的功能之一.基于对MathType排版效果的不满意,以及对公式进行检索的需求,我们使用LaTeX输入数学公式 ...

  3. Latex: 插入数学公式

    write equations align equations to left To only align one equation, you can \begin{flalign} &\te ...

  4. MeteoInfoLab脚本示例:LaTeX写数学公式

    LaTeX是排版常用的语法,科学计算软件中也常用它来写数学公式(比如MatLab, Matplotlib等),MeteoInfo通过调用JMathLaTeX库也可以实现这样的功能.LaTeX的语法介绍 ...

  5. MarkDown使用之LaTeX表示数学公式

    对于文本排版格式,对于\(Microsoft\,Word\)来说,功能尽全,可调的参数十分多,人们可能会将不少的时间放在具体的文字大小.实现样式.而\(markdown\)语法能够让人们通过符号去替代 ...

  6. [CSDN_Markdown]使用LaTeX基本数学公式

    简介 以前我很头疼在博文里写公式,一直期盼CSDN的博文编辑器能支持LaTeX 公式输入,今天终于可以使用这个功能了!此文主要讨论如何在CSDN的Markdown编辑器中写 LaTeX 公式! 使用L ...

  7. 【Latex】数学公式排版

    http://www.cnblogs.com/houkai/p/3399646.html 常用latex数学符号表 https://zh.wikipedia.org/wiki/Help:%E6%95% ...

  8. 使用Latex插入数学公式(二)

    初级运算 关系运算符 希腊字母 集合运算符逻辑运算符 空格问题 矩阵格式 矩阵格式有三种: 无括号的矩阵 matrix 是 Latex 的矩阵命令,矩阵命令中每一行以 \\ 结束,矩阵的元素之间用 & ...

  9. 使用LaTeX编辑数学公式

    首先在博客园的页首html里添加以下代码: <script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex ...

  10. Latex 编辑数学公式——快速上手

    参考链接: https://blog.csdn.net/fansongy/article/details/45368915 特殊符号: https://blog.csdn.net/caiandyong ...

随机推荐

  1. pycharm远程服务器进行调试

    背景是这样的:我有一台远程的服务器,以及一台本地的电脑:现在我想用远程的服务器上的python编译器来运行代码,怎么办?通用的做法是ssh服务器,vim代码,之后python运行文件,但是如果遇到调试 ...

  2. 使用vendor管理go第三方包

    安装verdor go get -u -v https://github.com/kardianos/govendor 记得将$GOPATH/bin加入PATH verdor使用 goverdor i ...

  3. css实现两栏布局,左侧固定宽,右侧自适应的7中方法

    一个面试会问的问题,如何实现两个盒子,左侧固定宽度,右侧自适应. 1.利用 calc 计算宽度的方法 css代码如下: .box{overflow: hidden;height: 100px;marg ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛-K:Supreme Number

    Supreme Number A prime number (or a prime) is a natural number greater than 11 that cannot be formed ...

  5. POJ 2751:Seek the Name, Seek the Fame(Hash)

    Seek the Name, Seek the Fame Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 24077   Ac ...

  6. 安装Ubuntu16.04与windows10双系统后,如何修改启动默认设置

    在安装了Ubuntu16.04系统之后,系统会默认自启动Ubuntu16.04,而我们大多数情况下可能都在使用windows系统,不修改默认设置,不经意间便会启动了Ubuntu16.04,通过我的经历 ...

  7. manjaro运行virtualbox报错

    manjaro运行virtualbox报错manjaro使用添加删除程序搜索virtualbox安装后运行报错, 安装过程有选择modules的过程(这里要选择匹配当前系统内核的版本),当时不了解是干 ...

  8. 20165313 《Java程序设计》第一周学习总结

    教材学习内容总结 1.Java的地位 1.网络地位 2.语言地位 3.需求地位 2.Java的特点 1.简单 2.面向对象 3.平台无关 4.多线程 5.动态 3.安装JDK(重点) 注释:需修改系统 ...

  9. 命令提示符操作及Java的特点

    day1_3 命令提示符的操作 GUI 图形化方式(可视化) CLI 命令行方式 (编程方式) dir 列出当前目录下文件及文件夹 md 创建文件夹 rd 删除文件夹(只能删除空文件夹) cd 进入指 ...

  10. Spring 中的接口知识整理

    本想每个小知识一篇随笔,但是那样,看起来有些单薄,所以,就放在一片文章里了.而且,以后还会慢慢在最后不断的追加. 目录: FactoryBean BeanPostProcessor 1.Factory ...