Depth-first search and Breadth-first search 深度优先搜索和广度优先搜索
Depth-first search
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures.
The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking 回溯.
For the following graph:
![]()
a depth-first search starting at A,
assuming that the left edges in the shown graph are chosen before right edges,
and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph),
will visit the nodes in the following order: A, B, D, F, E, C, G.
The edges traversed in this search form a Trémaux tree, a structure with important applications in graph theory.
Performing the same search without remembering previously visited nodes results in visiting nodes in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B, D, F, E cycle and never reaching C or G.
Iterative deepening is one technique to avoid this infinite loop and would reach all nodes.
深度优先的算法实现
Input: A graph G and a vertex v of G
Output: All vertices reachable from v labeled as discovered
A recursive implementation of DFS:[5]
1 procedure DFS(G,v):
2 label v as discovered
3 for all edges from v to w in G.adjacentEdges(v) do
4 if vertex w is not labeled as discovered then
5 recursively call DFS(G,w)
The order in which the vertices are discovered by this algorithm is called the lexicographic order.
A non-recursive implementation of DFS with worst-case space complexity O(|E|):[6] (使用栈,先进后出)
1 procedure DFS-iterative(G,v):
2 let S be a stack
3 S.push(v)
4 while S is not empty
5 v = S.pop()
6 if v is not labeled as discovered:
7 label v as discovered
8 for all edges from v to w in G.adjacentEdges(v) do
9 S.push(w)
These two variations of DFS visit the neighbors of each vertex in the opposite order from each other: the first neighbor of v visited by the recursive variation is the first one in the list of adjacent edges, while in the iterative variation the first visited neighbor is the last one in the list of adjacent edges. The recursive implementation will visit the nodes from the example graph in the following order: A, B, D, F, E, C, G. The non-recursive implementation will visit the nodes as: A, E, F, B, D, C, G.
The non-recursive implementation is similar to breadth-first search but differs from it in two ways:
- it uses a stack instead of a queue, and
- it delays checking whether a vertex has been discovered until the vertex is popped from the stack rather than making this check before adding the vertex.
Breadth-first search
Breadth-first search (BFS) is an algorithm for traversing or searching tree or graph data structures.
It starts at the tree root (or some arbitrary node of a graph, sometimes referred to as a 'search key'[1]), and explores all of the neighbor nodes at the present depth prior to moving on to the nodes at the next depth level.
It uses the opposite strategy as depth-first search, which instead explores the highest-depth nodes first before being forced to backtrack回溯 and expand shallower nodes.
shallower是shallow的比较级,较浅的
广度优先的实现 (使用队列,先进先出)
Input: A graph Graph and a starting vertex顶点 root of Graph
Output: Goal state. The parent links trace the shortest path back to root
1 procedure BFS(G,start_v):
2 let S be a queue
3 S.enqueue(start_v)
4 while S is not empty
5 v = S.dequeue()
6 if v is the goal:
7 return v
8 for all edges from v to w in G.adjacentEdges(v) do
9 if w is not labeled as discovered:
10 label w as discovered
11 w.parent = v
12 S.enqueue(w)
More details
This non-recursive implementation is similar to the non-recursive implementation of depth-first search, but differs from it in two ways:
- it uses a queue (First In First Out) instead of a stack and
- it checks whether a vertex顶点 has been discovered before enqueueing the vertex rather than delaying this check until the vertex is dequeued from the queue.
The Q queue contains the frontier along which the algorithm is currently searching.
Nodes can be labelled as discovered by storing them in a set, or by an attribute on each node, depending on the implementation.
Note that the word node is usually interchangeable with the word vertex.
The parent attribute of each vertex is useful for accessing the nodes in a shortest path, for example by backtracking from the destination node up to the starting node, once the BFS has been run, and the predecessors nodes have been set.
Breadth-first search produces a so-called breadth first tree. You can see how a breadth first tree looks in the following example.
Depth-first search and Breadth-first search 深度优先搜索和广度优先搜索的更多相关文章
- DFS_BFS(深度优先搜索 和 广度优先搜索)
package com.rao.graph; import java.util.LinkedList; /** * @author Srao * @className BFS_DFS * @date ...
- 【Python排序搜索基本算法】之深度优先搜索、广度优先搜索、拓扑排序、强联通&Kosaraju算法
Graph Search and Connectivity Generic Graph Search Goals 1. find everything findable 2. don't explor ...
- 【js数据结构】图的深度优先搜索与广度优先搜索
图类的构建 function Graph(v) {this.vertices = v;this.edges = 0;this.adj = []; for (var i = 0; i < this ...
- DFS或BFS(深度优先搜索或广度优先搜索遍历无向图)-04-无向图-岛屿数量
给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 1: 输入: ...
- 深度优先搜索DFS和广度优先搜索BFS简单解析(新手向)
深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每个点仅被访问一次,这个过程就是图的遍历.图的遍历常用的有深度优先搜索和广度优先搜索,这两者对于有向图和无向图 ...
- 深度优先搜索(DFS)和广度优先搜索(BFS)
深度优先搜索(DFS) 广度优先搜索(BFS) 1.介绍 广度优先搜索(BFS)是图的另一种遍历方式,与DFS相对,是以广度优先进行搜索.简言之就是先访问图的顶点,然后广度优先访问其邻接点,然后再依次 ...
- 深度优先搜索DFS和广度优先搜索BFS简单解析
转自:https://www.cnblogs.com/FZfangzheng/p/8529132.html 深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每 ...
- Unity中通过深度优先算法和广度优先算法打印游戏物体名
前言:又是一个月没写博客了,每次下班都懒得写,觉得浪费时间.... 深度优先搜索和广度优先搜索的定义,网络上已经说的很清楚了,我也是看了网上的才懂的,所以就不在这里赘述了.今天讲解的实例,主要是通过自 ...
- 广度优先搜索(Breadth First Search, BFS)
广度优先搜索(Breadth First Search, BFS) BFS算法实现的一般思路为: // BFS void BFS(int s){ queue<int> q; // 定义一个 ...
随机推荐
- java中的锁之AbstractQueuedSynchronizer源码分析(二)
一.成员变量. 1.目录. 2.state.该变量标记为volatile,说明该变量是对所有线程可见的.作用在于每个线程改变该值,都会马上让其他线程可见,在CAS(可见锁概念与锁优化)的时候是必不可少 ...
- 4.GDscript(2)关键字,运算符,字面量
(来源godot官方文档) 关键词 下面是该语言支持的关键字列表.由于关键字是保留字(令牌),它们不能用作标识符.操作符(如 in , not , and 或 or )以及下面列出的内置类型的名称也是 ...
- Java多线程-----原子变量和CAS算法
原子变量 原子变量保证了该变量的所有操作都是原子的,不会因为多线程的同时访问而导致脏数据的读取问题 Java给我们提供了以下几种原子类型: AtomicInteger和Ato ...
- jQuery选择器--:selected和:checked
:selected 概述 匹配所有选中的option元素 <!DOCTYPE html> <html> <head> <meta charset=" ...
- ReactiveCocoa(III)
flatMap(FlattenStrategy.latest) observe(on: UIScheduler()).startWithResult 切换线程: observeOn(UISchedul ...
- python的print函数自动换行及其避免
print函数自带换行功能,即在输出内容后会自动换行,但是有时我们并不需要这个功能,那怎么办呢?这时候就需要用到end这个参数了,使用方法参考下面这段打印$矩阵的代码: i = 1 while i&l ...
- 给本体ONT技术社区的第一封公开信-涉及到不少区块链技术知识
给本体ONT技术社区的第一封公开信-涉及到不少区块链技术知识 共识是区块链的核心机制,在一系列的区块链的发展历史当中,PoW/PoS/BFT等系列的共识算法都在各自的应用场景发挥了不同作用.在本体的第 ...
- div等比例缩放-------纯CSS实现自适应浏览器宽度的正方形
摘自:https://blog.csdn.net/u010513603/article/details/78200207 1.方案一:CSS3 vw 单位 CSS3 中新增了一组相对于可视区域百分比的 ...
- js 简易年历
html部分 <div class='calendar'> <div class="tabBox" id='nav' > <ul> <li ...
- 怎样从外网访问内网MySQL数据库?
本地安装了一个MySQL数据库,只能在局域网内访问到,怎样从外网也能访问到本地的MySQL数据库呢?本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动MySQL数据库 默认安装的MySQL ...