P4285 [SHOI2008]汉诺塔

递推

题目给出了优先级,那么走法是唯一的。

我们用$0,1,2$代表$A,B,C$三个柱子

设$g[i][x]$为第$x$根柱子上的$i$个盘子,经过演变后最终一定会全部转移到第$g[i][x]$根柱子上

$f[i][x]$表示第$x$根柱子上的$i$个盘子,转移到第$g[i][x]$根柱子上所用的步数。

现在开始递推。

假设有$i$个盘子在第$x$个盘子上

设$y=g[i-1][x],z=3-x-y$,表示$i-1$个盘子从$x$转移到$y$后,第$i$个盘子转移到$z$柱上

分类讨论:

1.当$g[i-1][y]=z$时,显然最终$i$个盘子都到$z$上

$i-1$个盘子到$y$柱上 $-->$ 第$i$个盘子到$z$柱上 $-->$ $i-1$个盘到$z$上

$g[i][x]=z,f[i][x]=f[i-1][x]+1+f[i-1][y]$

2.当$g[i-1][y]=x$时

$i-1$个盘子到$y$柱上 $-->$ 第$i$个盘子到$z$柱上 $-->$ $i-1$个盘到$x$上 $-->$ 第$i$个盘子到$y$柱上 $-->$ $i-1$个盘到$y$上$

$g[i][x]=y,f[i][x]=f[i-1][x]+1+f[i-1][y]+1+f[i-1][x]$

而$f[1][0/1/2],g[1][0/1/2]$可以预处理。

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int g[][],n;
long long f[][];
char s[][];
int main(){
scanf("%d",&n);
for(int i=;i;--i) scanf("%s",s[i]);
for(int i=;i<=;++i)//倒着更新方便存优先级。
g[][s[i][]-'A']=s[i][]-'A';
f[][]=f[][]=f[][]=;
for(int i=;i<=n;++i)
for(int x=;x<=;++x){
int y=g[i-][x],z=-x-y;
if(g[i-][y]==z)
g[i][x]=z,f[i][x]=f[i-][x]++f[i-][y];
else if(g[i-][y]==x)
g[i][x]=y,f[i][x]=f[i-][x]++f[i-][y]++f[i-][x];
}
printf("%lld",f[n][]);
return ;
}

bzoj1019 / P4285 [SHOI2008]汉诺塔的更多相关文章

  1. BZOJ1019 汉诺塔/洛谷P4285 [SHOI2008]汉诺塔

    汉诺塔(BZOJ) P4285 [SHOI2008]汉诺塔 居然是省选题,还是DP!(我的DP菜得要死,碰见就丢分) 冥思苦想了1h+ \(\to\) ?! 就是普通的hanoi NOI or HNO ...

  2. 【BZOJ1019】[SHOI2008]汉诺塔(数论,搜索)

    [BZOJ1019][SHOI2008]汉诺塔(数论,搜索) 题面 BZOJ 洛谷 题解 首先汉诺塔问题的递推式我们大力猜想一下一定会是形如\(f_i=kf_{i-1}+b\)的形式. 这个鬼玩意不好 ...

  3. P4285 [SHOI2008]汉诺塔 题解 (乱搞)

    题目链接 P4285 [SHOI2008]汉诺塔 解题思路 提供一种打表新思路 先来证明一个其他题解都没有证明的结论:\(ans[i]\)是可由\(ans[i-1]\)线性递推的. (\(ans[i] ...

  4. 【bzoj1019】[SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1427  Solved: 872[Submit][Status] ...

  5. P4285 [SHOI2008]汉诺塔

    题目描述 汉诺塔由三根柱子(分别用A.B.C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. 对汉诺塔的一次合法的操作是指:从一根 ...

  6. bzoj1019 [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1030  Solved: 638[Submit][Status] ...

  7. bzoj千题计划109:bzoj1019: [SHOI2008]汉诺塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题目中问步骤数,没说最少 可以大胆猜测移动方案唯一 (真的是唯一但不会证) 设f[i][j] ...

  8. bzoj1019: [SHOI2008]汉诺塔(动态规划)

    1019: [SHOI2008]汉诺塔 题目:传送门 简要题意: 和经典的汉诺塔问题区别不大,但是题目规定了一个移动时的优先级: 如果当前要从A柱子移动,但是A到C的优先级比A到B的优先级大的话,那就 ...

  9. 1019: [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status] ...

随机推荐

  1. vue watch 监听element upload组件上传成功返回的url列表

    因为 on-success 上传成功返回的是一个异步的结果....如果父组件需要这个结果的话 必须用watch 监听 然后里面建立一个 save()方法 save方法里面再调用接口 传需要的上传之后的 ...

  2. Linux 中的 tar

    tar -c: 建立压缩档案-x:解压-t:查看内容-r:向压缩归档文件末尾追加文件-u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用其中一个.下面的 ...

  3. Go linux 实践2

    今天,看看GO的高级语言特性-方法和接口 废话不多说,直接上代码 ************************************************* 1 package main 2 ...

  4. unittest多线程生成报告-----BeautifulReport

    原文地址https://www.cnblogs.com/yoyoketang/p/8404204.html 前言 selenium多线程跑用例,这个前面一篇已经解决了,如何生成一个测试报告这个是难点, ...

  5. cocos2d-x JS 纯代码加载播放plist与png动画

    var cache = cc.spriteFrameCache; cache.addSpriteFrames(plist, png); var frames = []; for (var i = 1; ...

  6. Docker服务端和客户端

    Docker是一个客户端-服务端(c/s)的架构程序

  7. factory源码分析——component_registry和object_registry

    registry类主要是为object和component提供一个轻量级的代理(lightweight proxy)来方便factory实现: registry class从uvm_object_wr ...

  8. 大话设计模式C++ 适配器模式

    适配器模式:将一个类的接口转换成客户希望的另外一个接口.Adapter模式使得原来由于接口不兼容而不能一起工作的那些类可以一起工作. 角色: (1)Target:这是客户所期待的接口,Target可以 ...

  9. yii2验证密码->手机号码短信发送>手机短信发送频繁问题

    <?php namespace frontend\models; use Yii; use yii\base\Model; class ChangeMobileSendRequestForm e ...

  10. Java多线程-----匿名内部类创建线程

       1.继承Thread类创建线程 package com.practise.createthread; public class AnonymousThread { public static v ...